393 research outputs found

    Dinoprostone vaginal insert (DVI) versus adjunctive sweeping of membranes and DVI for term induction of labor.

    Get PDF
    AIM: To compare the efficacy and safety of dinoprostone vaginal insert (DVI) alone versus DVI with adjunctive sweeping of membranes (ASM) for induction of labor (IOL). METHODS: Single-center, prospective, randomized controlled trial; women with singleton term pregnancies, cervical dilation ≥1 and <3 cm, intact membranes allocated to either DVI or DVI with ASM. The primary outcome was vaginal delivery within 24 h of insertion. Secondary outcomes included mean time from insertion to delivery, tachysystole, operative delivery for non-reassuring fetal status (NRFS), tocolytics, fetal outcomes, pain information, and subject satisfaction. RESULTS: One hundred and four received DVI (Group 1) alone and 104 DVI with ASM (Group 2). The rate of vaginal delivery within 24 h was 53% versus 56%, cesarean rate 8.7% versus 10.6% in Groups 1 and 2 respectively. Although the duration of labor was similar in both groups, about 6% of women required additional ripening with dinoprostone vaginal tablets in Group 2 compared to 11.5% in Group 1 (p-value = 0.2). The frequency of hyperstimulation syndrome, failed induction, analgesic requirements, and fetal outcomes were comparable. The majority (83%-86%) in either cohort were satisfied with their labor experience. Multivariate logistic regression demonstrated a slightly better chance for vaginal delivery within 24 h (odds ratio [OR] 1.22 [95% confidence interval, CI 0.65-2.29]; p-value 0.53] for DVI with ASM, although statistically insignificant. Younger maternal age and multiparity (OR 10.36 [95% CI 4.88-23.67]; p-value <0.0001) contributed to successful IOL. CONCLUSION: DVI with ASM is at least as efficacious as DVI for cervical ripening with no increase in morbidity. Although DVI with ASM group less often needed additional dinoprostone tablets to complete the process of IOL (p-value = 0.2), adjunctive sweeping has not been shown to have a significant impact on the duration of labor or mode of delivery

    Increased Asymmetric Dimethylarginine in Severe Falciparum Malaria: Association with Impaired Nitric Oxide Bioavailability and Fatal Outcome

    Get PDF
    Asymmetrical dimethylarginine (ADMA), an endogenous inhibitor of nitric oxide synthase (NOS), is a predictor of mortality in critical illness. Severe malaria (SM) is associated with decreased NO bioavailability, but the contribution of ADMA to the pathogenesis of impaired NO bioavailability and adverse outcomes in malaria is unknown. In adults with and without falciparum malaria, we tested the hypotheses that plasma ADMA would be: 1) increased in proportion to disease severity, 2) associated with impaired vascular and pulmonary NO bioavailability and 3) independently associated with increased mortality. We assessed plasma dimethylarginines, exhaled NO concentrations and endothelial function in 49 patients with SM, 78 with moderately severe malaria (MSM) and 19 healthy controls (HC). Repeat ADMA and endothelial function measurements were performed in patients with SM. Multivariable regression was used to assess the effect of ADMA on mortality and NO bioavailability. Plasma ADMA was increased in SM patients (0.85 µM; 95% CI 0.74–0.96) compared to those with MSM (0.54 µM; 95%CI 0.5–0.56) and HCs (0.64 µM; 95%CI 0.58–0.70; p<0.001). ADMA was an independent predictor of mortality in SM patients with each micromolar elevation increasing the odds of death 18 fold (95% CI 2.0–181; p = 0.01). ADMA was independently associated with decreased exhaled NO (rs = −0.31) and endothelial function (rs = −0.32) in all malaria patients, and with reduced exhaled NO (rs = −0.72) in those with SM. ADMA is increased in SM and associated with decreased vascular and pulmonary NO bioavailability. Inhibition of NOS by ADMA may contribute to increased mortality in severe malaria

    Endothelial nitric oxide pathways in the pathophysiology of dengue: a prospective observational study.

    Get PDF
    Background: Dengue can cause increased vascular permeability that may lead to hypovolemic shock. Endothelial dysfunction may underlie this; however the association of endothelial nitric oxide pathways with disease severity is unknown. Methods: We performed a prospective observational study in two Vietnamese hospitals, assessing patients presenting early (<72 hours fever) and patients hospitalized with warning signs or severe dengue. The reactive hyperaemic index (RHI), which measures endothelium-dependent vasodilation and is a surrogate marker of endothelial function and NO bioavailability was evaluated using peripheral artery tonometry (EndoPAT) and plasma levels of L-arginine, Arginase-1 and ADMA were measured at serial time-points. The main outcome of interest was plasma leakage severity. Results: 314 patients were enrolled, median age of the participants was 21 (IQR 13-30) years. No difference was found in the endothelial parameters between dengue and other febrile illness (OFI). Considering dengue patients, the RHI was significantly lower for patients with severe plasma leakage compared to those with no leakage (1.46 vs. 2.00, P<0.001), over acute time-points, apparent already in the early febrile phase (1.29 vs. 1.75, P=0.012). RHI correlated negatively with arginase-1, and positively with L-arginine (P=0.001). Endothelial dysfunction/NO bioavailability is associated with worse plasma leakage, occurs early in dengue illness and correlates with hypoargininaemia and high arginase-1 levels

    Asymmetric Dimethylarginine, Endothelial Nitric Oxide Bioavailability and Mortality in Sepsis

    Get PDF
    Background: Plasma concentrations of asymmetric dimethylarginine (ADMA), an endogenous inhibitor of nitric oxidesynthase, are raised in patients with chronic vascular disease, causing increased cardiovascular risk and endothelialdysfunction, but the role of ADMA in acute inflammatory states is less well defined.Methods and Results: In a prospective longitudinal study in 67 patients with acute sepsis and 31 controls, digitalmicrovascular reactivity was measured by peripheral arterial tonometry and blood was collected at baseline and 2&ndash;4 dayslater. Plasma ADMA and L-arginine concentrations were determined by high performance liquid chromatography. Baselineplasma L-arginine: ADMA ratio was significantly lower in sepsis patients (median [IQR] 63 [45&ndash;103]) than in hospital controls(143 [123&ndash;166], p,0.0001) and correlated with microvascular reactivity (r = 0.34, R2 = 0.12, p = 0.02). Baseline plasma ADMAwas independently associated with 28-day mortality (Odds ratio [95% CI] for death in those in the highest quartile($0.66 mmol/L) = 20.8 [2.2&ndash;195.0], p = 0.008), and was independently correlated with severity of organ failure. Increase inADMA over time correlated with increase in organ failure and decrease in microvascular reactivity.Conclusions: Impaired endothelial and microvascular function due to decreased endothelial NO bioavailability is a potentialmechanism linking increased plasma ADMA with organ failure and death in sepsis

    Trends and predictions of metabolic risk factors for acute myocardial infarction: findings from a multiethnic nationwide cohort

    Get PDF
    BACKGROUND: Understanding the trajectories of metabolic risk factors for acute myocardial infarction (AMI) is necessary for healthcare policymaking. We estimated future projections of the incidence of metabolic diseases in a multi-ethnic population with AMI. METHODS: The incidence and mortality contributed by metabolic risk factors in the population with AMI (diabetes mellitus [T2DM], hypertension, hyperlipidemia, overweight/obesity, active/previous smokers) were projected up to year 2050, using linear and Poisson regression models based on the Singapore Myocardial Infarction Registry from 2007 to 2018. Forecast analysis was stratified based on age, sex and ethnicity. FINDINGS: From 2025 to 2050, the incidence of AMI is predicted to rise by 194.4% from 482 to 1418 per 100,000 population. The largest percentage increase in metabolic risk factors within the population with AMI is projected to be overweight/obesity (880.0% increase), followed by hypertension (248.7% increase), T2DM (215.7% increase), hyperlipidemia (205.0% increase), and active/previous smoking (164.8% increase). The number of AMI-related deaths is expected to increase by 294.7% in individuals with overweight/obesity, while mortality is predicted to decrease by 11.7% in hyperlipidemia, 29.9% in hypertension, 32.7% in T2DM and 49.6% in active/previous smokers, from 2025 to 2050. Compared with Chinese individuals, Indian and Malay individuals bear a disproportionate burden of overweight/obesity incidence and AMI-related mortality. INTERPRETATION: The incidence of AMI is projected to continue rising in the coming decades. Overweight/obesity will emerge as fastest-growing metabolic risk factor and the leading risk factor for AMI-related mortality. FUNDING: This research was supported by the NUHS Seed Fund (NUHSRO/2022/058/RO5+6/Seed-Mar/03) and National Medical Research Council Research Training Fellowship (MOH-001131). The SMIR is a national, ministry-funded registry run by the National Registry of Diseases Office and funded by the Ministry of Health, Singapore

    HLA-A Confers an HLA-DRB1 Independent Influence on the Risk of Multiple Sclerosis

    Get PDF
    A recent high-density linkage screen confirmed that the HLA complex contains the strongest genetic factor for the risk of multiple sclerosis (MS). In parallel, a linkage disequilibrium analysis using 650 single nucleotide polymorphisms (SNP) markers of the HLA complex mapped the entire genetic effect to the HLA-DR-DQ subregion, reflected by the well-established risk haplotype HLA-DRB1*15,DQB1*06. Contrary to this, in a cohort of 1,084 MS patients and 1,347 controls, we show that the HLA-A gene confers an HLA-DRB1 independent influence on the risk of MS (P = 8.4×10−10). This supports the opposing view, that genes in the HLA class I region indeed exert an additional influence on the risk of MS, and confirms that the class I allele HLA-A*02 is negatively associated with the risk of MS (OR = 0.63, P = 7×10−12) not explained by linkage disequilibrium with class II. The combination of HLA-A and HLA-DRB1 alleles, as represented by HLA-A*02 and HLA-DRB1*15, was found to influence the risk of MS 23-fold. These findings imply complex autoimmune mechanisms involving both the regulatory and the effector arms of the immune system in the triggering of MS

    Parasite-Dependent Expansion of TNF Receptor II–Positive Regulatory T Cells with Enhanced Suppressive Activity in Adults with Severe Malaria

    Get PDF
    Severe Plasmodium falciparum malaria is a major cause of global mortality, yet the immunological factors underlying progression to severe disease remain unclear. CD4+CD25+ regulatory T cells (Treg cells) are associated with impaired T cell control of Plasmodium spp infection. We investigated the relationship between Treg cells, parasite biomass, and P. falciparum malaria disease severity in adults living in a malaria-endemic region of Indonesia. CD4+CD25+Foxp3+CD127lo Treg cells were significantly elevated in patients with uncomplicated (UM; n = 17) and severe malaria (SM; n = 16) relative to exposed asymptomatic controls (AC; n = 10). In patients with SM, Treg cell frequency correlated positively with parasitemia (r = 0.79, p = 0.0003) and total parasite biomass (r = 0.87, p<0.001), both major determinants for the development of severe and fatal malaria, and Treg cells were significantly increased in hyperparasitemia. There was a further significant correlation between Treg cell frequency and plasma concentrations of soluble tumor necrosis factor receptor II (TNFRII) in SM. A subset of TNFRII+ Treg cells with high expression of Foxp3 was increased in severe relative to uncomplicated malaria. In vitro, P. falciparum–infected red blood cells dose dependently induced TNFRII+Foxp3hi Treg cells in PBMC from malaria-unexposed donors which showed greater suppressive activity than TNFRII− Treg cells. The selective enrichment of the Treg cell compartment for a maximally suppressive TNFRII+Foxp3hi Treg subset in severe malaria provides a potential link between immune suppression, increased parasite biomass, and malaria disease severity. The findings caution against the induction of TNFRII+Foxp3hi Treg cells when developing effective malaria vaccines

    Ex-vivo changes in amino acid concentrations from blood stored at room temperature or on ice: implications for arginine and taurine measurements

    Get PDF
    Background: Determination of the plasma concentrations of arginine and other amino acids is important for understanding pathophysiology, immunopathology and nutritional supplementation in human disease. Delays in processing of blood samples cause a change in amino acid concentrations, but this has not been precisely quantified. We aimed to describe the concentration time profile of twenty-two amino acids in blood from healthy volunteers, stored at room temperature or on ice.Methods: Venous blood was taken from six healthy volunteers and stored at room temperature or in an ice slurry. Plasma was separated at six time points over 24 hours and amino acid levels were determined by high-performance liquid chromatography.Results: Median plasma arginine concentrations decreased rapidly at room temperature, with a 6% decrease at 30 minutes, 25% decrease at 2 hours and 43% decrease at 24 hours. Plasma ornithine increased exponentially over the same period. Plasma arginine was stable in blood stored on ice, with a &lt; 10% change over 24 hours. Plasma taurine increased by 100% over 24 hours, and this change was not prevented by ice. Most other amino acids increased over time at room temperature but not on ice.Conclusion: Plasma arginine concentrations in stored blood fall rapidly at room temperature, but remain stable on ice for at least 24 hours. Blood samples taken for the determination of plasma amino acid concentrations either should be placed immediately on ice or processed within 30 minutes of collection

    Combinations of Host Biomarkers Predict Mortality among Ugandan Children with Severe Malaria: A Retrospective Case-Control Study

    Get PDF
    Background: Severe malaria is a leading cause of childhood mortality in Africa. However, at presentation, it is difficult to predict which children with severe malaria are at greatest risk of death. Dysregulated host inflammatory responses and endothelial activation play central roles in severe malaria pathogenesis. We hypothesized that biomarkers of these processes would accurately predict outcome among children with severe malaria. Methodology/Findings: Plasma was obtained from children with uncomplicated malaria (n = 53), cerebral malaria (n = 44) and severe malarial anemia (n = 59) at time of presentation to hospital in Kampala, Uganda. Levels of angiopoietin-2, von Willebrand Factor (vWF), vWF propeptide, soluble P-selectin, soluble intercellular adhesion molecule-1 (ICAM-1), soluble endoglin, soluble FMS-like tyrosine kinase-1 (Flt-1), soluble Tie-2, C-reactive protein, procalcitonin, 10 kDa interferon gamma-induced protein (IP-10), and soluble triggering receptor expressed on myeloid cells-1 (TREM-1) were determined by ELISA. Receiver operating characteristic (ROC) curve analysis was used to assess predictive accuracy of individual biomarkers. Six biomarkers (angiopoietin-2, soluble ICAM-1, soluble Flt-1, procalcitonin, IP-10, soluble TREM-1) discriminated well between children who survived severe malaria infection and those who subsequently died (area under ROC curve&gt;0.7). Combinational approaches were applied in an attempt to improve accuracy. A biomarker score was developed based on dichotomization and summation of the six biomarkers, resulting in 95.7% (95% CI: 78.1-99.9) sensitivity and 88.8% (79.7-94.7) specificity for predicting death. Similar predictive accuracy was achieved with models comprised of 3 biomarkers. Classification tree analysis generated a 3-marker model with 100% sensitivity and 92.5% specificity (cross-validated misclassification rate: 15.4%, standard error 4.9%). Conclusions: We identified novel host biomarkers of pediatric severe and fatal malaria (soluble TREM-1 and soluble Flt-1) and generated simple biomarker combinations that accurately predicted death in an African pediatric population. While requiring validation in further studies, these results suggest the utility of combinatorial biomarker strategies as prognostic tests for severe malaria
    • …
    corecore