759 research outputs found

    Kernels for Below-Upper-Bound Parameterizations of the Hitting Set and Directed Dominating Set Problems

    Get PDF
    In the {\sc Hitting Set} problem, we are given a collection F\cal F of subsets of a ground set VV and an integer pp, and asked whether VV has a pp-element subset that intersects each set in F\cal F. We consider two parameterizations of {\sc Hitting Set} below tight upper bounds: p=mβˆ’kp=m-k and p=nβˆ’kp=n-k. In both cases kk is the parameter. We prove that the first parameterization is fixed-parameter tractable, but has no polynomial kernel unless coNPβŠ†\subseteqNP/poly. The second parameterization is W[1]-complete, but the introduction of an additional parameter, the degeneracy of the hypergraph H=(V,F)H=(V,{\cal F}), makes the problem not only fixed-parameter tractable, but also one with a linear kernel. Here the degeneracy of H=(V,F)H=(V,{\cal F}) is the minimum integer dd such that for each XβŠ‚VX\subset V the hypergraph with vertex set Vβˆ–XV\setminus X and edge set containing all edges of F\cal F without vertices in XX, has a vertex of degree at most d.d. In {\sc Nonblocker} ({\sc Directed Nonblocker}), we are given an undirected graph (a directed graph) GG on nn vertices and an integer kk, and asked whether GG has a set XX of nβˆ’kn-k vertices such that for each vertex y∉Xy\not\in X there is an edge (arc) from a vertex in XX to yy. {\sc Nonblocker} can be viewed as a special case of {\sc Directed Nonblocker} (replace an undirected graph by a symmetric digraph). Dehne et al. (Proc. SOFSEM 2006) proved that {\sc Nonblocker} has a linear-order kernel. We obtain a linear-order kernel for {\sc Directed Nonblocker}

    A mechanistic model of connector hubs, modularity, and cognition

    Full text link
    The human brain network is modular--comprised of communities of tightly interconnected nodes. This network contains local hubs, which have many connections within their own communities, and connector hubs, which have connections diversely distributed across communities. A mechanistic understanding of these hubs and how they support cognition has not been demonstrated. Here, we leveraged individual differences in hub connectivity and cognition. We show that a model of hub connectivity accurately predicts the cognitive performance of 476 individuals in four distinct tasks. Moreover, there is a general optimal network structure for cognitive performance--individuals with diversely connected hubs and consequent modular brain networks exhibit increased cognitive performance, regardless of the task. Critically, we find evidence consistent with a mechanistic model in which connector hubs tune the connectivity of their neighbors to be more modular while allowing for task appropriate information integration across communities, which increases global modularity and cognitive performance

    Microwave state transfer and adiabatic dynamics of magnetically trapped polar molecules

    Full text link
    Cold and ultracold polar molecules with nonzero electronic angular momentum are of great interest for studies in quantum chemistry and control, investigations of novel quantum systems, and precision measurement. However, in mixed electric and magnetic fields, these molecules are generically subject to a large set of avoided crossings among their Zeeman sublevels; in magnetic traps, these crossings lead to distorted potentials and trap loss from electric bias fields. We have characterized these crossings in OH by microwave-transferring trapped OH molecules from the upper |f; M = +3/2> parity state to the lower |e; +3/2> state and observing their trap dynamics under an applied electric bias field. Our observations are very well described by a simple Landau-Zener model, yielding insight to the rich spectra and dynamics of polar radicals in mixed external fields.Comment: 5 pages, 4 figures plus supplementary materia

    Low-energy molecular collisions in a permanent magnetic trap

    Full text link
    Cold, neutral hydroxyl radicals are Stark decelerated and confined within a magnetic trap consisting of two permanent ring magnets. The OH molecules are trapped in the ro-vibrational ground state at a density of ∼106\sim10^{6} cmβˆ’3^{-3} and temperature of 70 mK. Collisions between the trapped OH sample and supersonic beams of atomic He and molecular D2_{2} are observed and absolute collision cross sections measured. The He--OH and D2_{2}--OH center-of-mass collision energies are tuned from 60 cmβˆ’1^{-1} to 230 cmβˆ’1^{-1} and 145 cmβˆ’1^{-1} to 510 cmβˆ’1^{-1}, respectively, yielding evidence of reduced He--OH inelastic cross sections at energies below 84 cmβˆ’1^{-1}, the OH ground rotational level spacing.Comment: 4 pages, 4 figure
    • …
    corecore