2 research outputs found

    MULTI SENSOR DATA FUSION FOR AUTONOMOUS VEHICLES

    Get PDF
    Multi sensor Data Fusion for Advanced Driver Assistance Systems (ADAS) in Automotive industry has gained a lot of attention lately with the advent of self-driving vehicles and road traffic safety applications. In order to achieve an efficient ADAS, accurate scene object perception in the vicinity of sensor field-of-view (FOV) is vital. It is not only important to know where the objects are, but also the necessity is to predict the object’s behavior in future time space for avoiding the fatalities on the road. The major challenges in multi sensor data fusion (MSDF) arise due to sensor errors, multiple occluding targets and changing weather conditions. Thus, In this thesis to address some of the challenges a novel cooperative fusion architecture is proposed for road obstacle detection. Also, an architecture for multi target tracking is designed with robust track management. In order to evaluate the proposed tracker’s performance with different fusion paradigms, a discrete event simulation model is proposed. Experiments and evaluation of the above mentioned methods in real time and simulated data proves the robustness of the techniques considered for data fusion

    Small patient datasets reveal genetic drivers of non-small cell lung cancer subtypes using machine learning for hypothesis generation

    Get PDF
    Aim: Many small datasets of significant value exist in the medical space that are being underutilized. Due to the heterogeneity of complex disorders found in oncology, systems capable of discovering patient subpopulations while elucidating etiologies are of great value as they can indicate leads for innovative drug discovery and development. Methods: Two small non-small cell lung cancer (NSCLC) datasets (GSE18842 and GSE10245) consisting of 58 samples of adenocarcinoma (ADC) and 45 samples of squamous cell carcinoma (SCC) were used in a machine intelligence framework to identify genetic biomarkers differentiating these two subtypes. Utilizing a set of standard machine learning (ML) methods, subpopulations of ADC and SCC were uncovered while simultaneously extracting which genes, in combination, were significantly involved in defining the subpopulations. A previously described interactive hypothesis-generating method designed to work with ML methods was employed to provide an alternative way of extracting the most important combination of variables to construct a new data set. Results: Several genes were uncovered that were previously implicated by other methods. This framework accurately discovered known subpopulations, such as genetic drivers associated with differing levels of aggressiveness within the SCC and ADC subtypes. Furthermore, phyosphatidylinositol glycan anchor biosynthesis, class X (PIGX) was a novel gene implicated in this study that warrants further investigation due to its role in breast cancer proliferation. Conclusions: The ability to learn from small datasets was highlighted and revealed well-established properties of NSCLC. This showcases the utility of ML techniques to reveal potential genes of interest, even from small datasets, shedding light on novel driving factors behind subpopulations of patients
    corecore