44 research outputs found

    Perengkahan PFAD (Palm Fatty Acid Destillate) untuk Menghasilkan Biofuel Menggunakan Katalis Ni-Mo/Zeolit

    Full text link
    Petroleum reserves are depleted in Indonesia along with increased fuel requirements, demanding Indonesian society to harness alternative energy, one of which is biofuel. In this study, biofuels produced from cracking fatty acids contained in Destillate Palm Fatty Acid (PFAD). PFAD converted into biofuels via catalytic cracking process using a catalyst Ni.Mo / Zeolite with reaction temperature 380 oC in a stirred batch reactor. Metal concentrations in the zeolite was varied at 0%, 0.5%, 1% and 1.5% and the variation of the reaction stirring 300 rpm, 400 rpm, 500 rpm and 600 rpm. Cracking process using nitrogen gas with a flow rate of 150 ml / min. Yield (%) of the product obtained at the maximum stirring speed of 500 rpm with a metal concentration of 1%, amounting to 71.43% or 125 ml with 31.53% biofuel conversion. The composition of biofuels on cracking products was 8.8% and 35% Gasoline Kerosene and Diesel

    Pengomposan limbah lumpur dan serat buah kelapa sawit pada kondisi steril dan tidak steril menggunakan Mikroorganisme Lokal (MOL)

    Get PDF
    Produksi minyak sawit yang tinggi berbanding lurus dengan produksi limbahnya. Lumpur kelapa sawit merupakan larutan buangan yang dihasilkan selama prosespemerasan dan ekstraksi minyak.Limbah lumpur kelapa sawit disamping sebagaisumber hara makro dan mikro yang penting bagi tanaman, juga sebagai sumberbahan organik dan berperan pada perbaikan sifat fisik dan kima tanah. Limbahpadat lainnya yang belum dimanfaatkan secara maksimal adalah serat buahkelapa sawit yang juga mengandung unsur hara. Dari kedua potensi limbahpadat kelapa sawit menunjukkan bahwa sangat perlu dilakukan pengolahankhususnya pada limbah lumpur dan serat buah dimana berdasarkan hasil analisalaboratorium mengandung unsur hara yang baik untuk dikonversi menjadi pupukkompos. Mikroorganisme lokal (MOL) adalah mikroorganisme yangdimanfaatkan sebagai starter atau aktivator dalam pembuatan pupuk organikpadat maupun pupuk cair. Bahan utama MOL terdiri dari beberapa komponenyaitu karbohidrat, glukosa, dan sumber mikroorganisme. Tujuan penelitian iniadalah mengetahui kemampuan MOL sebagai aktivator dalam prosespengomposan limbah lumpur dan serat buah kelapa sawit yang disterilkan dantidak disterilkan. Dari hasil penelitian dapat ditarik kesimpulan bahwamikroorganisme pada MOL yang berperan sebagai pendegradasi pada prosespengomposan lumpur dan serat buah kelapa sawit. Hal ini berdasarkan hasilanalisa proses fermentasi tapai singkong menjadi MOL dimana jumlahmikroorganisme pada hari pertama sebesar 403,45mg/l dan pada hari kelimajumlah mikroba meningkat menjadi 456,10 mg/l. Selain itu dapat dilihat jugabahwa bahan baku yang disterilkan untuk parameter kualitas kompos antara lain: N, P, K, C, C/N,Mg, Ca, temperatur, pH, dan kadar air, mempunyai nilai yangmendekati SNI berbanding bahan baku yang tidak steril. Penggunaan MOLsebagai sumber mikroorganisme dalam proses pengomposan dapat dijadikanalternatif sebagai bioaktivator yang ekonomis dan ramah lingkungan

    Pengaruh Rasio Penambahan Acticomp terhadap Degradasi Struktur Morfologi Tandan Kosong Kelapa Sawit pada Proses Pengomposan Metode Windrow

    Full text link
    Oil palm empty fruit bunches (OPEFB) is a solid waste that significantly produced by palm oil mills. The main content of OPEFB is lignocellulose. High lignin in OPEFB cause the lenghth time of OPEFB decompositition. The decomposition process can be accelerated by the addition of decomposers, such as acticomp. Therefore, this study aimed to analyze the degradation of structure morphology OPEFB also composting time and C/N ratio by the addition of acticomp. This research method using three variations of the ratio addition acticomp to 100 kg OPEFB composted, 0.5 kg acticomp, 1 kg acticomp and 1.5 kg acticomp. The comsposting process using windrow composting system. The results were obtained the damage of OPEFB morphological structure and the decreasing ratio of C/N whereas 1.5 kg acticomp/100 kg as the biggest within 30 days. C/N ratio reached 19.67, in accordance with the regulation of the quality standards 28/Permentan/SR.130/5/2009

    Isolasi Lignin dari Jerami Padi dengan Metoda Klason

    Full text link
    Lignine is a complex polimer with high molecular weight which compiled of fenilpropane units. This study aims to know concentration of NaOH influence and delignification time of rice straw influence againts sucrose content of rice straw. Analysis of lignine purity using Klason Method. Isolation of waste rice straw are extraction, hydrolysis, delignification, and purity by using Klason Method. Extraction process be done on variety ofNaOH catalyst concentration (4%, 6%, 8%) in hydrolisis process and delignification time (1 hour, 11/2 hour, and 2 hour) . The best hydrolisis result is 8%, the best delinification time is 1 jam with concentration 8% NaOH in the process of ripening and the highest purity of lignine is 3,14%. The result of delignification will be analized its lignine concentration usingfor Fourier Transform Infra Red (FTIR) to know its function cluster

    Prediksi Sebaran Partikulat Insinerator RSUD Arifin Achmad Menggunakan Screen View

    Full text link
    Hospitals as health facilities that are curative and rehabilitative should be free of pollutants such as particulate matter. One cause of the particulate matter in the hospital is incineration. Hospital incinerators that burn trash in hazardous / infectious, so it is necessary to determine the level of distribution of the particulates produced by burning incinerator. This research is a descriptive study using dispersion method gauss with Screen View program. Parameters that are seen medical waste generation, particulate concentrations, wind direction and wind speed, and distance distribution of particulates. The data obtained are presented in the form of graphs and tables. The highest particulate distribution on the wind direction is north east with the concentration of 2.32 μg / m3 at a distance of 100 m from the incineratorat a distance of 100 m from the incinerator emissions rate 0.00957 g/s, 0.38 stack inside diameter and 9 m stack high
    corecore