10 research outputs found

    Cross-modal cue effects in motion processing

    Full text link
    The everyday environment brings to our sensory systems competing inputs from different modalities. The ability to filter these multisensory inputs in order to identify and efficiently utilize useful spatial cues is necessary to detect and process the relevant information. In the present study, we investigate how feature-based attention affects the detection of motion across sensory modalities. We were interested to determine how subjects use intramodal, cross-modal auditory, and combined audiovisual motion cues to attend to specific visual motion signals. The results showed that in most cases, both the visual and the auditory cues enhance feature-based orienting to a transparent visual motion pattern presented among distractor motion patterns. Whereas previous studies have shown cross-modal effects of spatial attention, our results demonstrate a spread of cross-modal feature-based attention cues, which have been matched for the detection threshold of the visual target. These effects were very robust in comparisons of the effects of valid vs. invalid cues, as well as in comparisons between cued and uncued valid trials. The effect of intramodal visual, cross-modal auditory, and bimodal cues also increased as a function of motion-cue salience. Our results suggest that orienting to visual motion patterns among distracters can be facilitated not only by intramodal priors, but also by feature-based cross-modal information from the auditory system.First author draf

    The performance of the World Rugby Head Injury Assessment Screening Tool: a diagnostic accuracy study

    Get PDF
    Abstract Background Off-field screening tools, such as the Sports Concussion Assessment Tool (SCAT), have been recommended to identify possible concussion following a head impact where the consequences are unclear. However, real-life performance, and diagnostic accuracy of constituent sub-tests, have not been well characterized. Methods A retrospective cohort study was performed in elite Rugby Union competitions between September 2015 and June 2018. The study population comprised consecutive players identified with a head impact event undergoing off-field assessments with the World Rugby Head Injury Assessment (HIA01) screening tool, an abridged version of the SCAT3. Off-field screening performance was investigated by evaluating real-life removal-from-play outcomes and determining the theoretical diagnostic accuracy of the HIA01 tool, and individual sub-tests, if player-specific baseline or normative sub-test thresholds were strictly applied. The reference standard was clinically diagnosed concussion determined by serial medical assessments. Results One thousand one hundred eighteen head impacts events requiring off-field assessments were identified, resulting in 448 concussions. Real-life removal-from-play decisions demonstrated a sensitivity of 76.8% (95% CI 72.6–80.6) and a specificity of 86.6% (95% CI 83.7–89.1) for concussion (AUROC 0.82, 95% CI 0.79–0.84). Theoretical HIA01 tool performance worsened if pre-season baseline values (sensitivity 89.6%, specificity 33.9%, AUROC 0.62, p < 0.01) or normative thresholds (sensitivity 80.4%, specificity 69.0%, AUROC 0.75, p < 0.01) were strictly applied. Symptoms and clinical signs were the HIA01 screening tool sub-tests most predictive for concussion; with immediate memory and tandem gait providing little additional diagnostic value. Conclusions These findings support expert recommendations that clinical judgement should be used in the assessment of athletes following head impact events. Substitution of the tandem gait and 5-word immediate memory sub-tests with alternative modes could potentially improve screening tool performance

    Unintended Consequences of Curricular Change: Lessons from Legacy Students

    No full text

    Concussion: an Introduction

    No full text

    Sport-Related Structural Brain Injury and Return to Play: Systematic Review and Expert Insight

    No full text
    BACKGROUND: Sport-related structural brain injury (SRSBI) is intracranial pathology incurred during sport. Management mirrors that of non-sport-related brain injury. An empirical vacuum exists regarding return to play (RTP) following SRSBI. OBJECTIVE: To provide key insight for operative management and RTP following SRSBI using a (1) focused systematic review and (2) survey of expert opinions. METHODS: A systematic literature review of SRSBI from 2012 to present in accordance with Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines and a cross-sectional survey of RTP in SRSBI by 31 international neurosurgeons was conducted. RESULTS: Of 27 included articles out of 241 systematically reviewed, 9 (33.0%) case reports provided RTP information for 12 athletes. To assess expert opinion, 31 of 32 neurosurgeons (96.9%) provided survey responses. For acute, asymptomatic SRSBI, 12 (38.7%) would not operate. Of the 19 (61.3%) who would operate, midline shift (63.2%) and hemorrhage size \u3e 10 mm (52.6%) were the most common indications. Following SRSBI with resolved hemorrhage, with or without burr holes, the majority of experts (\u3e75%) allowed RTP to high-contact/collision sports at 6 to 12 mo. Approximately 80% of experts did not endorse RTP to high-contact/collision sports for athletes with persistent hemorrhage. Following craniotomy for SRSBI, 40% to 50% of experts considered RTP at 6 to 12 mo. Linear regression revealed that experts allowed earlier RTP at higher levels of play (β = -0.58, 95% CI -0.111, -0.005, P = .033). CONCLUSION: RTP decisions following structural brain injury in athletes are markedly heterogeneous. While individualized RTP decisions are critical, aggregated expert opinions from 31 international sports neurosurgeons provide key insight. Level of play was found to be an important consideration in RTP determinations

    The polygenic architecture of schizophrenia — rethinking pathogenesis and nosology

    No full text
    corecore