40 research outputs found

    Submarine mass movements around the Iberian Peninsula. The building of continental margins through hazardous processes

    Get PDF
    Submarine mass movements, such as those which occur in all environments in every ocean of the world, are widely distributed across the Iberian continental margins. A lack of consistent data from various areas around the Iberian Peninsula makes it difficult to precisely understand their role in the sedimentary record. However, all the studies carried out over the past two decades reveal that they are a recurrent and widespread sedimentary process that may represent a significant geohazard. The majority of submarine mass movements observed in both the Mediterranean and Atlantic margins of the Iberian Peninsula have been generically identified as Mass Transport Deposits, but debris flows, slides, slumps and turbidites are common. Only a few remarkable examples involve huge volumes of sediment covering large areas (such as ~500 km3 and ~6x104 km2 ), but more moderate deposits (<200 km2 ) are frequently found on the seafloor or embedded in the sedimentary sequences, building margins and basins

    Blast Wave Characteristics and TNT Equivalent of Improvised Explosive Device at Small scaled Distances

    Get PDF
    A significant number of airblast test have been carried out with the purpose to characterise and analyse the properties of improvised explosive device (IED) with non-conventional explosives in terms of knowing the effects on people and/or structures. Small devices with 1.5 kg of explosive, initiated with a detonating cord have been studied. Seven different mixtures have been tested with two types of ammonium nitrate AN (technical and fertilizer) in different forms like prills or powder. In some cases, the ammonium nitrate has been mixed with fuel oil while in others, it has been mixed with aluminum. The TNT equivalent based on pressure, impulse, arrival time, positive phase duration and shock front velocity have been calculated and analysed for each mixture. Comparing the field test data obtained with respect to the representation of the UFC 3-340-02 values, it can be seen that the parameters measured are consistent. The IEDs with fertilizer ammonium nitrate do not detonate with the present charge conditions so the shockwave generated is only due to the detonating cord. When using the technical ammonium nitrate, ANFO can partially detonate and generate a potentially dangerous shockwave. Finally, the IED with AN and aluminum produces a TNT equivalent close to one when the technical AN is used

    Reinforced Concrete Building with IED Detonation: Test and Simulation

    Get PDF
    There is growing concern about the possibility of a suicide bomber being immolated when the army forces or the law enforcement agencies discover the place where they prepare their material or simply find themselves inside a building. To study the possible effects that these improvised explosive devices (IEDs) would have on the structures, eight tests were carried out with various configurations of IEDs with vest bombs inside a reinforced concrete (including walls and roof) building constructed ad hoc for these tests. These vests were made with different explosives (black powder, ANFO, AN/AL, PG2). For the characterization of these tests, a high-speed camera and pressure and acceleration sensors were used. The structure behaved surprisingly well, as it withstood all the first seven detonations without apparent structural damage. In the last detonation, located on the ground and with a significant explosive charge, the structural integrity of the roof and some of the walls was compromised. The simulation of the building was carried out with the LS-DYNA software with a Lagrangian formulation for the walls, using the LBE (based on CONWEP) module for the application of the charge. Despite the difficulty of this simulation, the results obtained, in terms of applied pressures and measured accelerations, are acceptable with differences of about 20%

    Development and validation of the terrain stability model for assessing landslide instability during heavy rain infiltration

    Get PDF
    Slope stability is a key topic, not only for engineers but also for politicians, due to the considerable monetary and human losses that landslides can cause every year. In fact, it is estimated that landslides have caused thousands of deaths and economic losses amounting to tens of billions of euros per year around the world. The geological stability of slopes is affected by several factors, such as climate, earthquakes, lithology and rock structures, among others. Climate is one of the main factors, especially when large amounts of rainwater are absorbed in short periods of time. Taking this issue into account, we developed an innovative analytical model using the limit equilibrium method supported by a geographic information system (GIS). This model is especially useful for predicting the risk of landslides in scenarios of heavy unpredictable rainfall. The model, hereafter named terrain stability (or TS) is a 2-D model, is programed in MATLAB and includes a steady-state hydrological term. Many variables measured in the field – topography, precipitation and type of soil – can be added, changed or updated using simple input parameters. To validate the model, we applied it to a real example – that of a landslide which resulted in human and material losses (collapse of a building) at Hundidero, La Viñuela (Málaga), Spain, in February 2010.</p

    The Guadiaro-Baños contourite drifts (SW Mediterranean). A geotechnical approach to stability analysis

    Get PDF
    Two Quaternary plastered contourite drifts, with terraced and low-mounded morphologies, make up the continental slope and base-of-slope in the northwestern Alboran Sea, respectively, between the Guadiaro and Baños turbidite systems, close to the Strait of Gibraltar. Considering their significant lateral extent, the link between the contourite drift deposits and landslides may be particularly important for hazard assessment. The physical properties, composition and geometry of contourite drifts have been proposed as key factors in slope stability, although this relationship still needs to be better constrained. In this work, new in-situ geotechnical data (cone penetration tests; CPTu) has been combined with morphostratigraphic, sedimentological, and (laboratory) geotechnical properties to determine the stability of the Guadiaro-Baños drifts. For the depositional domains of both drifts, the resulting sedimentary and geotechnical model describes low-plasticity granular and silty sands on the erosive terraced domain that evolve seawards to silty and silty-clay deposits with a higher plasticity and uniform geomechanical properties. For the shallower coarse-grained contourite sediments, the cohesion (c') and internal friction angle (ϕ') values are 0–9 kPa and 46–30°, respectively, whereas for the distal fine contourites the undrained shear strength gradient (∇Su) is 2 kPa/m. These properties allow us to establish high factors of safety for all the scenarios considered, including seismic loading. Slope failure may be triggered in the unlikely event that there is seismic acceleration of PGA > 0.19, although no potential glide planes have been observed within the first 20 m below the seafloor. This suggests that the contourite drifts studied tend to resist failure better than others with similar sedimentary characteristics. The interplay of several processes is proposed to explain the enhanced undrained shear strength: 1) the geometry of the drifts, defined by an upper contouritic terrace and lower low-mounded shapes; 2) recurrent low-intensity earthquakes with insufficient energy to trigger landslides, favouring increased strength due to dynamic compaction; and 3) cyclic loading induced by solitons/internal waves acting on the sediment.En prens

    Deep Sea Sedimentation

    Get PDF
    This article offers an overview of the main sedimentary systems defining the geomorphology of deep sea environments from low to high latitudes. Mass-transport deposits, turbidite systems, contourites, volcaniclastic aprons, glacial trough mouth systems, carbonate mounds and other bathyal systems, such as pelagites, hemipelagites, mid-ocean channels and polymetallic mineral deposits, are presented with special attention to their morphology, sediments, processes and controlling factors. The integration of the main systems on the continental margins and adjacent abyssal plains in the North Atlantic and westernmost Mediterranean allows to characterize different sedimentation models.En prens

    Understanding the complex geomorphology of a deep sea area affected by continental tectonic indentation: the case of the Gulf of Vera (Western Mediterranean)

    Get PDF
    We present a multidisciplinary study of morphology, stratigraphy, sedimentology, tectonic structure, and physical oceanography to report that the complex geomorphology of the Palomares continental margin and adjacent Algerian abyssal plain (i.e., Gulf of Vera, Western Mediterranean), is the result of the sedimentary response to the Aguilas Arc continental tectonic indentation in the Eurasian–Africa plate collision. The inden tation is imprinted on the basement of the margin with elongated metamorphic antiforms that are pierced by igneous bodies, and synforms that accommodate the deformation and create a complex physiography. The basement is partially covered by Upper Miocene deposits sealed by the regional Messinian Erosive Surface characterized by palaeocanyons that carve the modern margin. These deposits and outcropping basement highs are then covered and shaped by Plio-Quaternary contourites formed under the action of the Light Intermediate and Dense Deep Mediterranean bottom currents. Even though bottom currents are responsible for the primary sedimentation that shapes the margin, 97% of this region's seafloor is affected by mass-movements that modified contourite sediments by eroding, deforming, faulting, sliding, and depositing sediments. Mass-movement processes have resulted in the formation of recurrent mass-flow deposits, an enlargement of the submarine canyons and gully incisions, and basin-scale gravitational slides spreading above the Messinian Salinity Crisis salt layer. The Polopo, Aguilas and Gata slides are characterized by an extensional upslope domain that shapes the continental margin, and by a downslope contractional domain that shapes the abyssal plain with diapirs piercing (hemi)pelagites/sheet-like turbidites creating a seafloor dotted by numerous crests. The mass movements were mostly triggered by the interplay of the continental tectonic indentation of the Aguilas Arc with sedimentological factors over time. The indentation, which involves the progressively southeastward tectonic tilting of the whole land-sea region, likely generated a quasi-continuous oversteepening of the entire margin, thus reducing the stability of the contourites. In addition, tectonic tilting and subsidence of the abyssal plain favoured the flow of the underlying Messinian Salinity Crisis salt layer, contributing to the gravitational instability of the overlying sediments over large areas of the margin and abyssal plain

    Understanding the complex geomorphology of a deep sea area affected by continental tectonic indentation: The case of the Gulf of Vera (Western Mediterranean)

    Get PDF
    19 pages, 11 figures, 1 table, supplementary data https://doi.org/10.1016/j.geomorph.2022.108126.-- Data availability: Casas, D., & UTM-CSIC. (2018). FAUCES-1 Cruise, RV Sarmiento de Gamboa [Data set]. UTM-CSIC. doi: 10.20351/29SG20170925 Comas, M. & UTM-CSIC. TOPOMED-GASBATS. Cruise, RV Sarmiento de Gamboa [Data set]. UTM-CSIC.doi: 10.20351/29SG20120517We present a multidisciplinary study of morphology, stratigraphy, sedimentology, tectonic structure, and physical oceanography to report that the complex geomorphology of the Palomares continental margin and adjacent Algerian abyssal plain (i.e., Gulf of Vera, Western Mediterranean), is the result of the sedimentary response to the Aguilas Arc continental tectonic indentation in the Eurasian–Africa plate collision. The indentation is imprinted on the basement of the margin with elongated metamorphic antiforms that are pierced by igneous bodies, and synforms that accommodate the deformation and create a complex physiography. The basement is partially covered by Upper Miocene deposits sealed by the regional Messinian Erosive Surface characterized by palaeocanyons that carve the modern margin. These deposits and outcropping basement highs are then covered and shaped by Plio-Quaternary contourites formed under the action of the Light Intermediate and Dense Deep Mediterranean bottom currents. Even though bottom currents are responsible for the primary sedimentation that shapes the margin, 97% of this region's seafloor is affected by mass-movements that modified contourite sediments by eroding, deforming, faulting, sliding, and depositing sediments. Mass-movement processes have resulted in the formation of recurrent mass-flow deposits, an enlargement of the submarine canyons and gully incisions, and basin-scale gravitational slides spreading above the Messinian Salinity Crisis salt layer. The Polopo, Aguilas and Gata slides are characterized by an extensional upslope domain that shapes the continental margin, and by a downslope contractional domain that shapes the abyssal plain with diapirs piercing (hemi)pelagites/sheet-like turbidites creating a seafloor dotted by numerous crests. The mass movements were mostly triggered by the interplay of the continental tectonic indentation of the Aguilas Arc with sedimentological factors over time. The indentation, which involves the progressively southeastward tectonic tilting of the whole land-sea region, likely generated a quasi-continuous oversteepening of the entire margin, thus reducing the stability of the contourites. In addition, tectonic tilting and subsidence of the abyssal plain favoured the flow of the underlying Messinian Salinity Crisis salt layer, contributing to the gravitational instability of the overlying sediments over large areas of the margin and abyssal plainThis research has been funding by the Spanish projects: DAMAGE (CGL2016-80687-RAEI/FEDER) and FAUCES (CTM2015-65461-C2-1-R); and the Junta de Andalucía projects: RNM-148 (AGORA) P18-RT-3275 and PAPEL (B-RNM-301-UGR18). [...] This work acknowledges to IGCP 640 - S4LIDE (Significance of Modern and Ancient Submarine Slope LandSLIDEs), and to the ‘Severo Ochoa Centre of Excellence’ accreditation (CEX2019-000928-S

    Determination of the direction of dyke injection from the anisotropy of magnetic susceptibility (AMS) analysis

    No full text
    The AMS thecnique allow us to make a quick and precise determination of the magmatic flow plane and the magmatic flow direction, inside dykes and in their igneous host rock. Once calculated, the existing relationships between these two parameters allow us to establish if the stress system which originated the dykes emplacement coincides with that contributing to the emplacement of the pluton where they are included or on the contrary, has an origin related with later regional stresses. In this article, we have studied three aplitic dykes intruding in the La Alberca-Bejar granitic area. Each of them represents one of the three main types of dykes existing in the granitic massif
    corecore