28 research outputs found

    Kepler eclipsing binary stars. VII. the catalogue of eclipsing binaries found in the entire Kepler data set

    Get PDF
    The primary Kepler Mission provided nearly continuous monitoring of ~200,000 objects with unprecedented photometric precision. We present the final catalog of eclipsing binary systems within the 105 deg2 Kepler field of view. This release incorporates the full extent of the data from the primary mission (Q0-Q17 Data Release). As a result, new systems have been added, additional false positives have been removed, ephemerides and principal parameters have been recomputed, classifications have been revised to rely on analytical models, and eclipse timing variations have been computed for each system. We identify several classes of systems including those that exhibit tertiary eclipse events, systems that show clear evidence of additional bodies, heartbeat systems, systems with changing eclipse depths, and systems exhibiting only one eclipse event over the duration of the mission. We have updated the period and galactic latitude distribution diagrams and included a catalog completeness evaluation. The total number of identified eclipsing and ellipsoidal binary systems in the Kepler field of view has increased to 2878, 1.3% of all observed Kepler targets

    Kepler Eclipsing Binary Stars. Vii. The Catalog Of Eclipsing Binaries Found In The Entire Kepler Data Set

    Get PDF
    The Kepler mission has provided unprecedented, nearly continuous photometric data of ~200,000 objects in the ~105 deg2 field of view (FOV) from the beginning of science operations in May of 2009 until the loss of the second reaction wheel in May of 2013. The Kepler Eclipsing Binary Catalog contains information including but not limited to ephemerides, stellar parameters, and analytical approximation fits for every known eclipsing binary system in the Kepler FOV. Using target pixel level data collected from Kepler in conjunction with the Kepler Eclipsing Binary Catalog, we identify false positives among eclipsing binaries, i.e., targets that are not eclipsing binaries themselves, but are instead contaminated by eclipsing binary sources nearby on the sky and show eclipsing binary signatures in their light curves. We present methods for identifying these false positives and for extracting new light curves for the true source of the observed binary signal. For each source, we extract three separate light curves for each quarter of available data by optimizing the signal-to-noise ratio, the relative percent eclipse depth, and the flux eclipse depth. We present 289 new eclipsing binaries in the Kepler FOV that were not targets for observation, and these have been added to the catalog

    TIC 172900988: A transiting circumbinary planet detected in one sector of TESS data

    Get PDF
    We report the first discovery of a transiting circumbinary planet detected from a single sector of Transiting Exoplanet Survey Satellite (TESS) data. During Sector 21, the planet TIC 172900988b transited the primary star and then five days later it transited the secondary star. The binary is itself eclipsing, with a period P ≈ 19.7 days and an eccentricity e ≈ 0.45. Archival data from ASAS-SN, Evryscope, KELT, and SuperWASP reveal a prominent apsidal motion of the binary orbit, caused by the dynamical interactions between the binary and the planet. A comprehensive photodynamical analysis of the TESS, archival and follow-up data yields stellar masses and radii of M1 = 1.2384 ± 0.0007 Me and R1 = 1.3827 ± 0.0016 Re for the primary and M2 = 1.2019 ± 0.0007 Me and R2 = 1.3124 ± 0.0012 Re for the secondary. The radius of the planet is R3 = 11.25 ± 0.44 R (1.004 ± 0.039RJup). The planet's mass and orbital properties are not uniquely determined-there are six solutions with nearly equal likelihood. Specifically, we find that the planet's mass is in the range of 824 M3 981 M (2.65 M3 3.09MJup), its orbital period could be 188.8, 190.4, 194.0, 199.0, 200.4, or 204.1 days, and the eccentricity is between 0.02 and 0.09. At V = 10.141 mag, the system is accessible for high-resolution spectroscopic observations, e.g., the Rossiter-McLaughlin effect and transit spectroscopy
    corecore