10,210 research outputs found

    Novel Field-Induced Phases in HoMnO3 at Low Temperatures

    Full text link
    The novel field-induced re-entrant phase in multiferroic hexagonal HoMnO3 is investigated to lower temperatures by dc magnetization, ac susceptibility, and specific heat measurements at various magnetic fields. Two new phases have been unambiguously identified below the Neel transition temperature, TN=76 K, for magnetic fields up to 50 kOe. The existence of an intermediate phase between the P[6]_3[c]m and P[6]_3c[m] magnetic structures (previously predicted from dielectric measurements) was confirmed and the magnetic properties of this phase have been investigated. At low temperatures (T<5 K) a dome shaped phase boundary characterized by a magnetization jump and a narrow heat capacity peak was detected between the magnetic fields of 5 kOe and 18 kOe. The transition across this phase boundary is of first order and the magnetization and entropy jumps obey the magnetic analogue of the Clausius-Clapeyron relation. Four of the five low-temperature phases coexist at a tetracritical point at 2 K and 18 kOe. The complex magnetic phase diagram so derived provides an informative basis for unraveling the underlying driving forces for the occurrence of the various phases and the coupling between the different orders.Comment: 14 pages, 14 figure

    Low temperature dielectric anomalies in HoMnO_3: The complex phase diagram

    Full text link
    The dielectric constant of multiferroic hexagonal HoMnO_3 exhibits an unprecedented diversity of anomalies at low temperatures (1.8 K< T <10 K) and under external magnetic fields related to magnetic phase transitions in the coupled system of Ho moments, Mn spins, and ferroelectric polarization. The derived phase diagram is far more complex than previously assumed including reentrant phases, phase transitions with distinct thermal and field hysteresis, as well as several multicritical points. Magnetoelastic interactions introduce lattice anomalies at the magnetic phase transitions. The re-evaluation of the T-H phase diagram of HoMnO_3 is demanded.Comment: 12 pages, 3 figure

    Strong spin-lattice coupling in multiferroic HoMnO3_{3}: Thermal expansion anomalies and pressure effect

    Full text link
    Evidence for a strong spin-lattice coupling in multiferroic HoMnO_3 is derived from thermal expansion measurements along a- and c-axis. The magnetoelastic effect results in sizable anomalies of the thermal expansivities at the antiferromagnetic (T_N) and the spin rotation (T_{SR}) transition temperatures as well as in a negative c-axis expansivity below room temperature. The coupling between magnetic orders and dielectric properties below T_N is explained by the lattice strain induced by the magnetoelastic effect. At T_{SR} various physical quantities show discontinuities that are thermodynamically consistent with a first order phase transition

    Pressure-Temperature Phase Diagram of Multiferroic Ni3V2O8Ni_3V_2O_8

    Full text link
    The pressure-temperature phase diagram of multiferroic Ni3V2O8Ni_3V_2O_8 is investigated for hydrostatic pressures up to 2 GPa. The stability range of the ferroelectric phase associated with the incommensurate helical spin order is reduced by pressure and ferroelectricity is completely suppressed at the critical pressure of 1.64 GPa at 6.2 K. Thermal expansion measurements at ambient pressure show strong step-like anomalies of the lattice parameters associated with the lock-in transition into the commensurate paraelectric phase. The expansion anomalies are highly anisotropic, the related volume change is consistent with the high-pressure phase diagram

    Searching for Z′Z' bosons decaying to gluons

    Full text link
    The production and decay of a new heavy vector boson, a chromophilic Z′Z' vector boson, is described. The chromophilic Z′Z' couples only to two gluons, but its two-body decays are absent, leading to a dominant decay mode of Z′→qqˉgZ'\rightarrow q\bar{q}g. The unusual nature of the interaction predicts a cross-section which grows with mZ′m_{Z'} for a fixed coupling and an accompanying gluon with a coupling that rises with its energy. We study the ttˉgt\bar{t}g decay mode, proposing distinct reconstruction techniques for the observation of an excess and for the measurement of mZ′m_{Z'}. We estimate the sensitivity of current experimental datasets.Comment: For submission to PR

    Structural Anomalies at the Magnetic and Ferroelectric Transitions in RMn2O5RMn_2O_5 (R=Tb, Dy, Ho)

    Full text link
    Strong anomalies of the thermal expansion coefficients at the magnetic and ferroelectric transitions have been detected in multiferroic RMn2O5RMn_2O_5. Their correlation with anomalies of the specific heat and the dielectric constant is discussed. The results provide evidence for the magnetic origin of the ferroelectricity mediated by strong spin-lattice coupling in the compounds. Neutron scattering data for HoMn2O5HoMn_2O_5 indicate a spin reorientation at the two low-temperature phase transitions

    Modular detergents tailor the purification and structural analysis of membrane proteins including G-protein coupled receptors

    Get PDF
    Detergents enable the purification of membrane proteins and are indispensable reagents instructural biology. Even though a large variety of detergents have been developed in the lastcentury, the challenge remains to identify guidelines that allowfine-tuning of detergents forindividual applications in membrane protein research. Addressing this challenge, here weintroduce the family of oligoglycerol detergents (OGDs). Native mass spectrometry (MS)reveals that the modular OGD architecture offers the ability to control protein purificationand to preserve interactions with native membrane lipids during purification. In addition to abroad range of bacterial membrane proteins, OGDs also enable the purification and analysisof a functional G-protein coupled receptor (GPCR). Moreover, given the modular design ofthese detergents, we anticipatefine-tuning of their properties for specific applications instructural biology. Seen from a broader perspective, this represents a significant advance forthe investigation of membrane proteins and their interactions with lipids

    Thermal detection of single e-h pairs in a biased silicon crystal detector

    Get PDF
    We demonstrate that individual electron-hole pairs are resolved in a 1 cm2^2 by 4 mm thick silicon crystal (0.93 g) operated at ∼\sim35 mK. One side of the detector is patterned with two quasiparticle-trap-assisted electro-thermal-feedback transition edge sensor (QET) arrays held near ground potential. The other side contains a bias grid with 20\% coverage. Bias potentials up to ±\pm 160 V were used in the work reported here. A fiber optic provides 650~nm (1.9 eV) photons that each produce an electron-hole (e−h+e^{-} h^{+}) pair in the crystal near the grid. The energy of the drifting charges is measured with a phonon sensor noise σ\sigma ∼\sim0.09 e−h+e^{-} h^{+} pair. The observed charge quantization is nearly identical for h+h^+'s or e−e^-'s transported across the crystal.Comment: 4 journal pages, 5 figure

    Marginally Trapped Surfaces in the Nonsymmetric Gravitational Theory

    Full text link
    We consider a simple, physical approach to the problem of marginally trapped surfaces in the Nonsymmetric Gravitational Theory (NGT). We apply this approach to a particular spherically symmetric, Wyman sector gravitational field, consisting of a pulse in the antisymmetric field variable. We demonstrate that marginally trapped surfaces do exist for this choice of initial data.Comment: REVTeX 3.0 with epsf macros and AMS symbols, 3 pages, 1 figur
    • …
    corecore