10,210 research outputs found
Novel Field-Induced Phases in HoMnO3 at Low Temperatures
The novel field-induced re-entrant phase in multiferroic hexagonal HoMnO3 is
investigated to lower temperatures by dc magnetization, ac susceptibility, and
specific heat measurements at various magnetic fields. Two new phases have been
unambiguously identified below the Neel transition temperature, TN=76 K, for
magnetic fields up to 50 kOe. The existence of an intermediate phase between
the P[6]_3[c]m and P[6]_3c[m] magnetic structures (previously predicted from
dielectric measurements) was confirmed and the magnetic properties of this
phase have been investigated. At low temperatures (T<5 K) a dome shaped phase
boundary characterized by a magnetization jump and a narrow heat capacity peak
was detected between the magnetic fields of 5 kOe and 18 kOe. The transition
across this phase boundary is of first order and the magnetization and entropy
jumps obey the magnetic analogue of the Clausius-Clapeyron relation. Four of
the five low-temperature phases coexist at a tetracritical point at 2 K and 18
kOe. The complex magnetic phase diagram so derived provides an informative
basis for unraveling the underlying driving forces for the occurrence of the
various phases and the coupling between the different orders.Comment: 14 pages, 14 figure
Low temperature dielectric anomalies in HoMnO_3: The complex phase diagram
The dielectric constant of multiferroic hexagonal HoMnO_3 exhibits an
unprecedented diversity of anomalies at low temperatures (1.8 K< T <10 K) and
under external magnetic fields related to magnetic phase transitions in the
coupled system of Ho moments, Mn spins, and ferroelectric polarization. The
derived phase diagram is far more complex than previously assumed including
reentrant phases, phase transitions with distinct thermal and field hysteresis,
as well as several multicritical points. Magnetoelastic interactions introduce
lattice anomalies at the magnetic phase transitions. The re-evaluation of the
T-H phase diagram of HoMnO_3 is demanded.Comment: 12 pages, 3 figure
Strong spin-lattice coupling in multiferroic HoMnO: Thermal expansion anomalies and pressure effect
Evidence for a strong spin-lattice coupling in multiferroic HoMnO_3 is
derived from thermal expansion measurements along a- and c-axis. The
magnetoelastic effect results in sizable anomalies of the thermal expansivities
at the antiferromagnetic (T_N) and the spin rotation (T_{SR}) transition
temperatures as well as in a negative c-axis expansivity below room
temperature. The coupling between magnetic orders and dielectric properties
below T_N is explained by the lattice strain induced by the magnetoelastic
effect. At T_{SR} various physical quantities show discontinuities that are
thermodynamically consistent with a first order phase transition
Pressure-Temperature Phase Diagram of Multiferroic
The pressure-temperature phase diagram of multiferroic is
investigated for hydrostatic pressures up to 2 GPa. The stability range of the
ferroelectric phase associated with the incommensurate helical spin order is
reduced by pressure and ferroelectricity is completely suppressed at the
critical pressure of 1.64 GPa at 6.2 K. Thermal expansion measurements at
ambient pressure show strong step-like anomalies of the lattice parameters
associated with the lock-in transition into the commensurate paraelectric
phase. The expansion anomalies are highly anisotropic, the related volume
change is consistent with the high-pressure phase diagram
Searching for bosons decaying to gluons
The production and decay of a new heavy vector boson, a chromophilic
vector boson, is described. The chromophilic couples only to two gluons,
but its two-body decays are absent, leading to a dominant decay mode of
. The unusual nature of the interaction predicts a
cross-section which grows with for a fixed coupling and an
accompanying gluon with a coupling that rises with its energy. We study the
decay mode, proposing distinct reconstruction techniques for the
observation of an excess and for the measurement of . We estimate the
sensitivity of current experimental datasets.Comment: For submission to PR
Structural Anomalies at the Magnetic and Ferroelectric Transitions in (R=Tb, Dy, Ho)
Strong anomalies of the thermal expansion coefficients at the magnetic and
ferroelectric transitions have been detected in multiferroic . Their
correlation with anomalies of the specific heat and the dielectric constant is
discussed. The results provide evidence for the magnetic origin of the
ferroelectricity mediated by strong spin-lattice coupling in the compounds.
Neutron scattering data for indicate a spin reorientation at the
two low-temperature phase transitions
Modular detergents tailor the purification and structural analysis of membrane proteins including G-protein coupled receptors
Detergents enable the purification of membrane proteins and are indispensable reagents instructural biology. Even though a large variety of detergents have been developed in the lastcentury, the challenge remains to identify guidelines that allowfine-tuning of detergents forindividual applications in membrane protein research. Addressing this challenge, here weintroduce the family of oligoglycerol detergents (OGDs). Native mass spectrometry (MS)reveals that the modular OGD architecture offers the ability to control protein purificationand to preserve interactions with native membrane lipids during purification. In addition to abroad range of bacterial membrane proteins, OGDs also enable the purification and analysisof a functional G-protein coupled receptor (GPCR). Moreover, given the modular design ofthese detergents, we anticipatefine-tuning of their properties for specific applications instructural biology. Seen from a broader perspective, this represents a significant advance forthe investigation of membrane proteins and their interactions with lipids
Thermal detection of single e-h pairs in a biased silicon crystal detector
We demonstrate that individual electron-hole pairs are resolved in a 1 cm
by 4 mm thick silicon crystal (0.93 g) operated at 35 mK. One side of the
detector is patterned with two quasiparticle-trap-assisted
electro-thermal-feedback transition edge sensor (QET) arrays held near ground
potential. The other side contains a bias grid with 20\% coverage. Bias
potentials up to 160 V were used in the work reported here. A fiber optic
provides 650~nm (1.9 eV) photons that each produce an electron-hole () pair in the crystal near the grid. The energy of the drifting charges
is measured with a phonon sensor noise 0.09 pair.
The observed charge quantization is nearly identical for 's or 's
transported across the crystal.Comment: 4 journal pages, 5 figure
Marginally Trapped Surfaces in the Nonsymmetric Gravitational Theory
We consider a simple, physical approach to the problem of marginally trapped
surfaces in the Nonsymmetric Gravitational Theory (NGT). We apply this approach
to a particular spherically symmetric, Wyman sector gravitational field,
consisting of a pulse in the antisymmetric field variable. We demonstrate that
marginally trapped surfaces do exist for this choice of initial data.Comment: REVTeX 3.0 with epsf macros and AMS symbols, 3 pages, 1 figur
- …