10,216 research outputs found

    Novel Field-Induced Phases in HoMnO3 at Low Temperatures

    Full text link
    The novel field-induced re-entrant phase in multiferroic hexagonal HoMnO3 is investigated to lower temperatures by dc magnetization, ac susceptibility, and specific heat measurements at various magnetic fields. Two new phases have been unambiguously identified below the Neel transition temperature, TN=76 K, for magnetic fields up to 50 kOe. The existence of an intermediate phase between the P[6]_3[c]m and P[6]_3c[m] magnetic structures (previously predicted from dielectric measurements) was confirmed and the magnetic properties of this phase have been investigated. At low temperatures (T<5 K) a dome shaped phase boundary characterized by a magnetization jump and a narrow heat capacity peak was detected between the magnetic fields of 5 kOe and 18 kOe. The transition across this phase boundary is of first order and the magnetization and entropy jumps obey the magnetic analogue of the Clausius-Clapeyron relation. Four of the five low-temperature phases coexist at a tetracritical point at 2 K and 18 kOe. The complex magnetic phase diagram so derived provides an informative basis for unraveling the underlying driving forces for the occurrence of the various phases and the coupling between the different orders.Comment: 14 pages, 14 figure

    Magnetic Phase Diagrams of Multiferroic Hexagonal RMnO3 (R=Er, Yb, Tm, and Ho)

    Full text link
    The magnetic phase diagrams of RMnO3 (R = Er, Yb, Tm, Ho) are investigated up to 14 Tesla via magnetic and dielectric measurements. The stability range of the AFM order below the Neel temperature of the studied RMnO3 extends to far higher magnetic fields than previously assumed. Magnetic irreversibility indicating the presence of a spontaneous magnetic moment is found near 50 K for R=Er, Yb, and Tm. At very low temperatures and low magnetic fields the phase boundary defined by the ordering of the rare earth moments is resolved. The sizable dielectric anomalies observed along all phase boundaries are evidence for strong spin-lattice coupling in the hexagonal RMnO3. In HoMnO3 the strong magnetoelastic distortions are investigated in more detail via magnetostriction experiments up to 14 Tesla. The results are discussed based on existing data on magnetic symmetries and the interactions between the Mn-spins, the rare earth moments, and the lattice.Comment: 23 pages, 16 figures, to be published in JMR's Aug. focus issue on multiferroic

    Pressure-Temperature Phase Diagram of Multiferroic Ni3V2O8Ni_3V_2O_8

    Full text link
    The pressure-temperature phase diagram of multiferroic Ni3V2O8Ni_3V_2O_8 is investigated for hydrostatic pressures up to 2 GPa. The stability range of the ferroelectric phase associated with the incommensurate helical spin order is reduced by pressure and ferroelectricity is completely suppressed at the critical pressure of 1.64 GPa at 6.2 K. Thermal expansion measurements at ambient pressure show strong step-like anomalies of the lattice parameters associated with the lock-in transition into the commensurate paraelectric phase. The expansion anomalies are highly anisotropic, the related volume change is consistent with the high-pressure phase diagram

    Strong spin-lattice coupling in multiferroic HoMnO3_{3}: Thermal expansion anomalies and pressure effect

    Full text link
    Evidence for a strong spin-lattice coupling in multiferroic HoMnO_3 is derived from thermal expansion measurements along a- and c-axis. The magnetoelastic effect results in sizable anomalies of the thermal expansivities at the antiferromagnetic (T_N) and the spin rotation (T_{SR}) transition temperatures as well as in a negative c-axis expansivity below room temperature. The coupling between magnetic orders and dielectric properties below T_N is explained by the lattice strain induced by the magnetoelastic effect. At T_{SR} various physical quantities show discontinuities that are thermodynamically consistent with a first order phase transition

    Low temperature dielectric anomalies in HoMnO_3: The complex phase diagram

    Full text link
    The dielectric constant of multiferroic hexagonal HoMnO_3 exhibits an unprecedented diversity of anomalies at low temperatures (1.8 K< T <10 K) and under external magnetic fields related to magnetic phase transitions in the coupled system of Ho moments, Mn spins, and ferroelectric polarization. The derived phase diagram is far more complex than previously assumed including reentrant phases, phase transitions with distinct thermal and field hysteresis, as well as several multicritical points. Magnetoelastic interactions introduce lattice anomalies at the magnetic phase transitions. The re-evaluation of the T-H phase diagram of HoMnO_3 is demanded.Comment: 12 pages, 3 figure

    Analysis of Clumps in Molecular Cloud Models: Mass Spectrum, Shapes, Alignment and Rotation

    Full text link
    Observations reveal concentrations of molecular line emission on the sky, called ``clumps,'' in dense, star-forming molecular clouds. These clumps are believed to be the eventual sites of star formation. We study the three-dimensional analogs of clumps using a set of self-consistent, time-dependent numerical models of molecular clouds. The models follow the decay of initially supersonic turbulence in an isothermal, self-gravitating, magnetized fluid. We find the following. (1) Clumps are intrinsically triaxial. This explains the observed deficit of clumps with a projected axis ratio near unity, and the apparent prolateness of clumps. (2) Simulated clump axes are not strongly aligned with the mean magnetic field within clumps, nor with the large-scale mean fields. This is in agreement with observations. (3) The clump mass spectrum has a high-mass slope that is consistent with the Salpeter value. There is a low-mass break in the slope at \sim 0.5 \msun, although this may depend on model parameters including numerical resolution. (4) The typical specific spin angular momentum of clumps is 4×1022cm2s14 \times 10^{22} {\rm cm^2 s^{-1}}. This is larger than the median specific angular momentum of binary stars. Scaling arguments suggest that higher resolution simulations may soon be able to resolve the scales at which the angular momentum of binary stars is determined.Comment: 14 pages, 13 figures, to appear in 2003 July 20 Ap

    Structural Anomalies at the Magnetic and Ferroelectric Transitions in RMn2O5RMn_2O_5 (R=Tb, Dy, Ho)

    Full text link
    Strong anomalies of the thermal expansion coefficients at the magnetic and ferroelectric transitions have been detected in multiferroic RMn2O5RMn_2O_5. Their correlation with anomalies of the specific heat and the dielectric constant is discussed. The results provide evidence for the magnetic origin of the ferroelectricity mediated by strong spin-lattice coupling in the compounds. Neutron scattering data for HoMn2O5HoMn_2O_5 indicate a spin reorientation at the two low-temperature phase transitions

    Strangeness counting in high energy collisions

    Get PDF
    The estimates of overall strange quark production in high energy e+e-, pp and ppbar collisions by using the statistical-thermal model of hadronisation are presented and compared with previous works. The parametrization of strangeness suppression within the model is discussed. Interesting regularities emerge in the strange/non-strange produced quark ratio which turns out to be fairly constant in elementary collisions while it is twice as large in SPS heavy ion collision.Comment: talk given at Strangeness in Quark Matter 98, submitted to J. Phys.

    EEG arousal prediction via hypoxemia indicator in patients with Obstructive Sleep Apnea Syndrome

    Get PDF
    Obstructive sleep apnea syndrome (OSAS) is a sleep breathing disorder characterized by recurrent airflow obstruction caused by a total or partial collapse of the upper airway. OSAS is a common affliction suffered by millions. The arousal index (ArI) is the best predictor of daytime somnolence for patients with OSAS, however, the polysomnography (PSG) examination in the sleep lab is expensive, time consuming and labor intensive. The objective of this study is to evaluate the ability and reliability of arousal prediction via the hypoxemia indicator in patients with OSAS. Patients with a diagnosis of OSAS by standard polysomnography were recruited from China Medical University Hospital Centre. There were 248 patients in the learning set and 255 patients in the validation set. The presence of OSAS was defined as an Apnea Hypopnea Index (AHI) >5/h. We used the hypoxemia indicator to predict ArI in patients with OSAS by linear regression and evaluated the prediction performance in different clinical characteristics subsets. The standard error of estimate of ArI prediction was 12.9 in the learning set. For predicting the severity of ArI, for ArI exceeding 15/h or 30/h, the sensitivity was 53.4% and 75.7%, respectively, with corresponding specificity of 96.6%, and 77.4%, respectively. We analyzed the hypoxemia indicator for predicting the severity of sleep fragmentation. The result demonstrated it ispossible to predict ArI via the hypoxemia indicator, especially in severepatients

    Cut-wire pairs and plate pairs as magnetic atoms for optical metamaterials

    Full text link
    We study the optical properties of metamaterials made from cut-wire pairs or plate pairs. We obtain a more pronounced optical response for arrays of plate pairs -- a geometry which also eliminates the undesired polarization anisotropy of the cut-wire pairs. The measured optical spectra agree with simulations, revealing negative magnetic permeability in the range of telecommunications wavelengths. Thus, nanoscopic plate pairs might serve as an alternative to the established split-ring resonator design.Comment: 3 pages, 4 figures, submitted to Opt. Let
    corecore