1,304 research outputs found

    Checkpoint inhibition of the APC/C in HeLa cells is mediated by a complex of BUBR1, BUB3, CDC20, and MAD2

    Get PDF
    The mitotic checkpoint prevents cells with unaligned chromosomes from prematurely exiting mitosis by inhibiting the anaphase-promoting complex/cyclosome (APC/C) from targeting key proteins for ubiquitin-mediated proteolysis. We have examined the mechanism by which the checkpoint inhibits the APC/C by purifying an APC/C inhibitory factor from HeLa cells. We call this factor the mitotic checkpoint complex (MCC) as it consists of hBUBR1, hBUB3, CDC20, and MAD2 checkpoint proteins in near equal stoichiometry. MCC inhibitory activity is 3,000-fold greater than that of recombinant MAD2, which has also been shown to inhibit APC/C in vitro. Surprisingly, MCC is not generated from kinetochores, as it is also present and active in interphase cells. However, only APC/C isolated from mitotic cells was sensitive to inhibition by MCC. We found that the majority of the APC/C in mitotic lysates is associated with the MCC, and this likely contributes to the lag in ubiquitin ligase activity. Importantly, chromosomes can suppress the reactivation of APC/C. Chromosomes did not affect the inhibitory activity of MCC or the stimulatory activity of CDC20. We propose that the preformed interphase pool of MCC allows for rapid inhibition of APC/C when cells enter mitosis. Unattached kinetochores then target the APC/C for sustained inhibition by the MCC

    Mapping the assembly pathways that specify formation of the trilaminar kinetochore plates in human cells

    Get PDF
    We report the interactions amongst 20 proteins that specify their assembly to the centromere–kinetochore complex in human cells. Centromere protein (CENP)-A is at the top of a hierarchy that directs three major pathways, which are specified by CENP-C, -I, and Aurora B. Each pathway consists of branches that intersect to form nodes that may coordinate the assembly process. Complementary EM studies found that the formation of kinetochore trilaminar plates depends on the CENP-I/NUF2 branch, whereas CENP-C and Aurora B affect the size, shape, and structural integrity of the plates. We found that hMis12 is not constitutively localized at kinetochores, and that it is not essential for recruiting CENP-I. Our studies also revealed that kinetochores in HeLa cells contain an excess of CENP-A, of which ∼10% is sufficient to promote the assembly of normal levels of kinetochore proteins. We elaborate on a previous model that suggested kinetochores are assembled from repetitive modules (Zinkowski, R.P., J. Meyne, and B.R. Brinkley. 1991. J. Cell Biol. 113:1091–110)

    Histone deacetylase 4 interacts with 53BP1 to mediate the DNA damage response

    Get PDF
    Anumber of proteins are recruited to nuclear foci upon exposure to double-strand DNA damage, including 53BP1 and Rad51, but the precise role of these DNA damage–induced foci remain unclear. Here we show in a variety of human cell lines that histone deacetylase (HDAC) 4 is recruited to foci with kinetics similar to, and colocalizes with, 53BP1 after exposure to agents causing double-stranded DNA breaks. HDAC4 foci gradually disappeared in repair-proficient cells but persisted in repair-deficient cell lines or cells irradiated with a lethal dose, suggesting that resolution of HDAC4 foci is linked to repair. Silencing of HDAC4 via RNA interference surprisingly also decreased levels of 53BP1 protein, abrogated the DNA damage–induced G2 delay, and radiosensitized HeLa cells. Our combined results suggest that HDAC4 is a critical component of the DNA damage response pathway that acts through 53BP1 and perhaps contributes in maintaining the G2 cell cycle checkpoint

    Where does stress happen? Ecological momentary assessment of daily stressors using a mobile phone app. [Journal article]

    Get PDF
    Despite the importance of daily stress to individuals' health and wellbeing, few studies have explored where stress happens in real time, that is, dynamic stress processes in different spaces. As such, stress interventions rarely account for the environment in which stress occurs. We used mobile phone based ecological momentary assessment (EMA) to collect daily stress data. Thirty-three participants utilized a mobile-phone-based EMA app to self-report stressors as they went about their daily lives. Geographic coordinates were automatically collected with each stress report. Data from thematic analysis of stressors by location (home, work, work from home, other) were used to determine whether certain stressors were more prevalent in certain environments. Nine daily stressors significantly differed by location. Work-related stress was reported more often at work. Pets, household chores, sleep, and media-related stressors were reported most at home. Physical illnesses, vehicle issues, and safety/security stressors occurred most often while participants were "working from home." Traffic-related stress was experienced more commonly in "other" environments. Other 18 stressors were generated regardless of location, suggesting that these stressors were persistent and without respect to location. Study findings expand the understanding of environments in which specific stressors occur, providing baseline data for potential targeted "just-in-time" stress interventions tailored to unique stressors in specific environments. We also provide findings related to the "work from home" phenomenon. Further work is needed to better understand the unique stressors among the large number of individuals who transitioned to working from home during and after the COVID-19 pandemic

    A Human BRCA2 Complex Containing a Structural DNA Binding Component Influences Cell Cycle Progression

    Get PDF
    AbstractGermline mutations of the human BRCA2 gene confer susceptibility to breast cancer. Although the function of the BRCA2 protein remains to be determined, murine cells homozygous for BRCA2 inactivation display chromosomal aberrations. We have isolated a 2 MDa BRCA2-containing complex and identified a structural DNA binding component, designated as BR CA2-A ssociated F actor 35 (BRAF35). BRAF35 contains a nonspecific DNA binding HMG domain and a kinesin-like coiled coil domain. Similar to BRCA2, BRAF35 mRNA expression levels in mouse embryos are highest in proliferating tissues with high mitotic index. Strikingly, nuclear staining revealed a close association of BRAF35/BRCA2 complex with condensed chromatin coincident with histone H3 phosphorylation. Importantly, antibody microinjection experiments suggest a role for BRCA2/BRAF35 complex in modulation of cell cycle progression

    Kinesin-like protein CENP-E is upregulated in rheumatoid synovial fibroblasts

    Get PDF
    INTRODUCTION: Articular destruction by invading synovial fibroblasts is a typical feature in rheumatoid arthritis (RA). Recent data support the hypothesis that key players in this scenario are transformed-appearing synovial fibroblasts at the site of invasion into articular cartilage and bone. They maintain their aggressive phenotype toward cartilage, even when first cultured and thereafter coimplanted together with normal human cartilage into severe combined immunodeficient mice for an extended period of time. However, little is known about the upregulation of genes that leads to this aggressive fibroblast phenotype. To inhibit this progressive growth without interfering with pathways of physiological matrix remodelling, identification of pathways that operate specifically in RA synovial fibroblasts is required. In order to achieve this goal, identification of genes showing upregulation restricted to RA synovial fibroblasts is essential. AIMS: To identify specifically expressed genes using RNA arbitrarily primed (RAP)-polymerase chain reaction (PCR) for differential display in patients with RA. METHODS: RNA was extracted from cultured synovial fibroblasts from 10 patients with RA, four patients with osteoarthritis (OA), and one patient with psoriatic arthritis. RAP-PCR was performed using different arbitrary primers for first-strand and second-strand synthesis. First-strand and second-strand synthesis were performed using arbitrary primers: US6 (5' -GTGGTGACAG-3') for first strand, and Nuclear 1+ (5' -ACGAAGAAGAG-3'), OPN28 (5' -GCACCAGGGG-3'), Kinase A2+ (5' -GGTGCCTTTGG-3')and OPN24 (5' -AGGGGCACCA-3') for second-strand synthesis. PCR reactions were loaded onto 8 mol/l urea/6% polyacrylamide-sequencing gels and electrophoresed.Gel slices carrying the target fragment were then excised with a razor blade, eluated and reamplified. After verifying their correct size and purity on 4% agarose gels, the reamplified products derived from the single-strand confirmation polymorphism gel were cloned, and five clones per transcript were sequenced. Thereafter, a GenBank(®) analysis was performed. Quantitative reverse transcription PCR of the segments was performed using the PCR MIMIC(®) technique.In-situ expression of centromere kinesin-like protein-E (CENP-E) messenger (m)RNA in RA synovium was assessed using digoxigenin-labelled riboprobes, and CENP-E protein expression in fibroblasts and synovium was performed by immunogold-silver immunohistochemistry and cytochemistry. Functional analysis of CENP-E was done using different approaches (eg glucocorticoid stimulation, serum starvation and growth rate analysis of synovial fibroblasts that expressed CENP-E). RESULTS: In RA, amplification of a distinct PCR product suitable for sequencing could be observed. The indicated complementary DNA fragment of 434 base pairs from RA mRNA corresponded to nucleotides 6615-7048 in the human centromere kinesin-like protein CENP-E mRNA (GenBank(®) accession No. emb/Z15005).The isolated sequence shared greater than 99% nucleic acid (P = 2.9e(-169)) identity with the human centromere kinesin-like protein CENP-E. Two base changes at positions 6624 (A to C) and 6739 (A to G) did not result in alteration in the amino acid sequence, and therefore 100% amino acid identity could be confirmed. The amplification of 10 clones of the cloned RAP product revealed the presence of CENP-E mRNA in every fibroblast culture examined, showing from 50% (271.000 ± 54.000 phosphor imager arbitrary units) up to fivefold (961.000 ± 145.000 phosphor imager arbitrary units) upregulation when compared with OA fibroblasts. Neither therapy with disease-modifying antirheumatic drugs such as methotrexate, gold, resochine or cyclosporine A, nor therapy with oral steroids influenced CENP-E expression in the RA fibroblasts. Of the eight RA fibroblast populations from RA patients who were receiving disease-modifying antirheumatic drugs, five showed CENP-E upregulation; and of the eight fibroblast populations from RA patients receiving steroids, four showed CENP-E upregulation. Numerous synovial cells of the patients with RA showed a positive in situ signal for the isolated CENP-E gene segment, confirming CENP-E mRNA production in rheumatoid synovium, whereas in OA synovial tissue CENP-E mRNA could not be detected. In addition, CENP-E expression was independent from medication. This was further confirmed by analysis of the effect of prednisolone on CENP-E expression, which revealed no alteration in CENP-E mRNA after exposure to different (physiological) concentrations of prednisolone. Serum starvation also could not suppress CENP-E mRNA completely. DISCUSSION: Since its introduction in 1992, numerous variants of the differential display method and continuous improvements including RAP-PCR have proved to have both efficiency and reliability in examination of differentially regulated genes. The results of the present study reveal that RAP-PCR is a suitable method to identify differentially expressed genes in rheumatoid synovial fibroblasts. The mRNA, which has been found to be upregulated in rheumatoid synovial fibroblasts, codes for a kinesin-like motor protein named CENP-E, which was first characterized in 1991. It is a member of a family of centromere-associated proteins, of which six (CENP-A to CENP-F) are currently known. CENP-E itself is a kinetochore motor, which accumulates transiently at kinetochores in the G(2) phase of the cell cycle before mitosis takes place, appears to modulate chromosome movement and spindle elongation,and is degraded at the end of mitosis. The presence or upregulation of CENP-E has never been associated with RA. The three-dimensional structure of CENP-E includes a coiled-coil domain. This has important functions and shows links to known pathways in RA pathophysiology. Coiled-coil domains can also be found in jun and fos oncogene products, which are frequently upregulated in RA synovial fibroblasts. They are also involved in DNA binding and transactivation processes resembling the situation in AP-1 (Jun/Fos)-dependent DNA-binding in rheumatoid synovium. Most interestingly, these coiled-coil motifs are crucial for the assembly of viral proteins, and the upregulation of CENP-E might reflect the influence of infectious agents in RA synovium. We also performed experiments showing that serum starvation decreased, but did not completely inhibit CENP-E mRNA expression. This shows that CENP-E is related to, but does not completely depend on proliferation of these cells. In addition, we determined the growth rate of CENP-E high and low expressors, showing that it was independent from the amount of CENP-E expression. supporting the statement that upregulation of CENP-E reflects an activated RA fibroblast phenotype. In summary, the results of the present study support the hypothesis that CENP-E, presumably independently from medication, may not only be upregulated, but may also be involved in RA pathophysiology

    Alterations of immune response of non-small lung cancer with azacytidine

    Get PDF
    Innovative therapies are needed for advanced Non-Small Cell Lung Cancer (NSCLC). We have undertaken a genomics based, hypothesis driving, approach to query an emerging potential that epigenetic therapy may sensitize to immune checkpoint therapy targeting PD-L1/PD-1 interaction. NSCLC cell lines were treated with the DNA hypomethylating agent azacytidine (AZA - Vidaza) and genes and pathways altered were mapped by genome-wide expression and DNA methylation analyses. AZA-induced pathways were analyzed in The Cancer Genome Atlas (TCGA) project by mapping the derived gene signatures in hundreds of lung adeno (LUAD) and squamous cell carcinoma (LUSC) samples. AZA up-regulates genes and pathways related to both innate and adaptive immunity and genes related to immune evasion in a several NSCLC lines. DNA hypermethylation and low expression of IRF7, an interferon transcription factor, tracks with this signature particularly in LUSC. In concert with these events, AZA up-regulates PD-L1 transcripts and protein, a key ligand-mediator of immune tolerance. Analysis of TCGA samples demonstrates that a significant proportion of primary NSCLC have low expression of AZA-induced immune genes, including PD-L1. We hypothesize that epigenetic therapy combined with blockade of immune checkpoints - in particular the PD-1/PD-L1 pathway - may augment response of NSCLC by shifting the balance between immune activation and immune inhibition, particularly in a subset of NSCLC with low expression of these pathways. Our studies define a biomarker strategy for response in a recently initiated trial to examine the potential of epigenetic therapy to sensitize patients with NSCLC to PD-1 immune checkpoint blockade
    corecore