4,529 research outputs found

    Phase Difference Between the Electromagnetic and Strong Amplitudes for psi(2S) and J/psi Decays into Pairs of Pseudoscalar Mesons

    Full text link
    Using the data for 24.5x10^6 psi(2S) produced in e^+e^- annihilations at sqrt{s}=3686 MeV at the CESR-c e^+e^- collider and 8.6x10^6 J/psi produced in the decay psi(2S)->pi^+pi^-J/psi, the branching fractions for psi(2S) and J/psi decays to pairs of pseudoscalar mesons, pi^+pi^-, K^+K^-, and K_S K_L, have been measured using the CLEO-c detector. We obtain branching fractions Br(psi(2S)->pi^+pi^-)=(7.6+-2.5+-0.6)x10^-6, Br(psi(2S)->K^+K^-)=(74.8+-2.3+-3.9)x10^-6, Br(psi(2S)->K_S K_L)=(52.8+-2.5+-3.4)x10^-6, and Br(J/psi->pi^+pi^-)=(1.47+-0.13+-0.13)x10^-4, Br(J/psi->K^+K^-)=(2.86+-0.09+-0.19)x10^-4, Br(J/psi+-K_S K_L)=(2.62+-0.15+-0.14)x10^-4, where the first errors are statistical and the second errors are systematic. The phase differences between the amplitudes for electromagnetic and strong decays of psi(2S) and J/psi to 0^{-+} pseudoscalar pairs are determined by a Monte Carlo method to be \delta(psi(2S)_{PP}=(110.5^{+16.0}_{-9.5})^o and \delta(J/psi)_{PP}=(73.5^{+5.0}_{-4.5})^o. The difference between the two is \Delta\delta = \delta(psi(2S))_{PP}-\delta(J/psi)_{PP} =(37.0^{+16.5}_{-10.5})^o.Comment: 16 pages, 5 figures, submitted to PR

    “I Won’t Use the Term Dumbing It Down, but You Have to Take the Scientific Jargon Out”: A Qualitative Study of Environmental Health Partners’ Communication Practices and Needs

    Get PDF
    Effective research translation and science communication are necessary for successful implementation of water resources management initiatives. This entails active involvement of stakeholders through collaborative partnerships and knowledge-sharing practices. To follow up a recent study with the National Institute of Environmental Health Sciences (NIEHS)–funded Center for Oceans and Human Health and Climate Change Interactions (OHHC2I) project investigators, the center’s Community Engagement Core (CEC) documented center partners’ science communication practices and needs to inform a collaborative training and improve investigator-partner bidirectional communication. Thirteen (13) individuals participated in 10 semi-structured qualitative interviews focused on their research translation needs, science communication and dissemination tactics, and interactions and experiences with scientists. Based on our findings, we recommend a collaborative, scientist-stakeholder training to include plain language development, dissemination tactics, communication evaluation, stakeholder and intended audience engagement, and strategies for effective transdisciplinary partnerships. This work contributes to the knowledge and understanding of stakeholder engagement practices specifically focused on science communication that can enhance relationship-building between academia and partners involved in environmental health–focused initiatives in the context of South Carolina but applicable elsewhere

    Community-wide analysis of microbial genome sequence signatures

    Get PDF
    Genome signatures are used to identify and cluster sequences de novo from an acid biofilm microbial community metagenomic dataset, revealing information about the low-abundance community members

    Phonon downconversion to suppress correlated errors in superconducting qubits

    Full text link
    Quantum error correction can preserve quantum information in the presence of local errors, but correlated errors are fatal. For superconducting qubits, high-energy particle impacts from background radioactivity produce energetic phonons that travel throughout the substrate and create excitations above the superconducting ground state, known as quasiparticles, which can poison all qubits on the chip. We use normal metal reservoirs on the chip back side to downconvert phonons to low energies where they can no longer poison qubits. We introduce a pump-probe scheme involving controlled injection of pair-breaking phonons into the qubit chips. We examine quasiparticle poisoning on chips with and without back-side metallization and demonstrate a reduction in the flux of pair-breaking phonons by over a factor of 20. We use a Ramsey interferometer scheme to simultaneously monitor quasiparticle parity on three qubits for each chip and observe a two-order of magnitude reduction in correlated poisoning due to background radiation.Comment: 24 pages, 17 figures, 5 table

    Threshold effects in excited charmed baryon decays

    Get PDF
    Motivated by recent results on charmed baryons from CLEO and FOCUS, we reexamine the couplings of the orbitally excited charmed baryons. Due to its proximity to the [Sigma_c pi] threshold, the strong decays of the Lambda_c(2593) are sensitive to finite width effects. This distorts the shape of the invariant mass spectrum in Lambda_{c1}-> Lambda_c pi^+pi^- from a simple Breit-Wigner resonance, which has implications for the experimental extraction of the Lambda_c(2593) mass and couplings. We perform a fit to unpublished CLEO data which gives M(Lambda_c(2593)) - M(Lambda_c) = 305.6 +- 0.3 MeV and h2^2 = 0.24^{+0.23}_{-0.11}, with h2 the Lambda_{c1}-> Sigma_c pi strong coupling in the chiral Lagrangian. We also comment on the new orbitally excited states recently observed by CLEO.Comment: 9 pages, 3 figure

    Updated Measurement of the Strong Phase in D0 --> K+pi- Decay Using Quantum Correlations in e+e- --> D0 D0bar at CLEO

    Full text link
    We analyze a sample of 3 million quantum-correlated D0 D0bar pairs from 818 pb^-1 of e+e- collision data collected with the CLEO-c detector at E_cm = 3.77 GeV, to give an updated measurement of \cos\delta and a first determination of \sin\delta, where \delta is the relative strong phase between doubly Cabibbo-suppressed D0 --> K+pi- and Cabibbo-favored D0bar --> K+pi- decay amplitudes. With no inputs from other experiments, we find \cos\delta = 0.81 +0.22+0.07 -0.18-0.05, \sin\delta = -0.01 +- 0.41 +- 0.04, and |\delta| = 10 +28+13 -53-0 degrees. By including external measurements of mixing parameters, we find alternative values of \cos\delta = 1.15 +0.19+0.00 -0.17-0.08, \sin\delta = 0.56 +0.32+0.21 -0.31-0.20, and \delta = (18 +11-17) degrees. Our results can be used to improve the world average uncertainty on the mixing parameter y by approximately 10%.Comment: Minor revisions, version accepted by PR

    Studies of the decays D^0 \rightarrow K_S^0K^-\pi^+ and D^0 \rightarrow K_S^0K^+\pi^-

    Full text link
    The first measurements of the coherence factor R_{K_S^0K\pi} and the average strong--phase difference \delta^{K_S^0K\pi} in D^0 \to K_S^0 K^\mp\pi^\pm decays are reported. These parameters can be used to improve the determination of the unitary triangle angle \gamma\ in B^- \rightarrow D~K−\widetilde{D}K^- decays, where D~\widetilde{D} is either a D^0 or a D^0-bar meson decaying to the same final state, and also in studies of charm mixing. The measurements of the coherence factor and strong-phase difference are made using quantum-correlated, fully-reconstructed D^0D^0-bar pairs produced in e^+e^- collisions at the \psi(3770) resonance. The measured values are R_{K_S^0K\pi} = 0.70 \pm 0.08 and \delta^{K_S^0K\pi} = (0.1 \pm 15.7)∘^\circ for an unrestricted kinematic region and R_{K*K} = 0.94 \pm 0.12 and \delta^{K*K} = (-16.6 \pm 18.4)∘^\circ for a region where the combined K_S^0 \pi^\pm invariant mass is within 100 MeV/c^2 of the K^{*}(892)^\pm mass. These results indicate a significant level of coherence in the decay. In addition, isobar models are presented for the two decays, which show the dominance of the K^*(892)^\pm resonance. The branching ratio {B}(D^0 \rightarrow K_S^0K^+\pi^-)/{B}(D^0 \rightarrow K_S^0K^-\pi^+) is determined to be 0.592 \pm 0.044 (stat.) \pm 0.018 (syst.), which is more precise than previous measurements.Comment: 38 pages. Version 3 updated to include the erratum information. Errors corrected in Eqs (25), (26), 28). Fit results updated accordingly, and external inputs updated to latest best known values. Typo corrected in Eq(3)- no other consequence

    Observation of the Dalitz Decay Ds∗+→Ds+e+e−D_{s}^{*+} \to D_{s}^{+} e^{+} e^{-}

    Full text link
    Using 586 pb−1\textrm{pb}^{-1} of e+e−e^{+}e^{-} collision data acquired at s=4.170\sqrt{s}=4.170 GeV with the CLEO-c detector at the Cornell Electron Storage Ring, we report the first observation of Ds∗+→Ds+e+e−D_{s}^{*+} \to D_{s}^{+} e^{+} e^{-} with a significance of 5.3σ5.3 \sigma. The ratio of branching fractions \calB(D_{s}^{*+} \to D_{s}^{+} e^{+} e^{-}) / \calB(D_{s}^{*+} \to D_{s}^{+} \gamma) is measured to be [0.72−0.13+0.15(stat)±0.10(syst)][ 0.72^{+0.15}_{-0.13} (\textrm{stat}) \pm 0.10 (\textrm{syst})]%, which is consistent with theoretical expectations
    • 

    corecore