25 research outputs found

    Superparamagnetic-like ac susceptibility behavior in a "partially disordered antiferromagnetic" compound, Ca3_3CoRhO6_6

    Full text link
    We report the results of dc and ac magnetization measurements as a function of temperature (1.8 - 300 K) for the spin chain compound, Ca3_3CoRhO6_6, which has been recently reported to exhibit a partially disordered antiferromagnetic (PDAF) structure in the range 30 - 90 K and spin-glass freezing below 30 K. We observe an unexpectedly large frequency dependence of ac susceptibility in the T range 30 - 90 K, typical of superparamagnets. In addition, we find that there is no difference in the isothermal remanent magnetization behavior for the two regimes below 90 K. These findings call for more investigations to understand the magnetism of this compound.Comment: 4 pages, 3 figure

    Electronic and magnetic structures of the rare-earth compounds R\u3csub\u3e2\u3c/sub\u3eFe\u3csub\u3e17\u3c/sub\u3eN\u3csub\u3eξ\u3c/sub\u3e

    Get PDF
    Structural and magnetic properties of the rare-earth compounds R2Fe17Nξ have been studied with neutron-diffraction measurements and self-consistent spin-polarized electronic-structure calculations. The diffraction results indicate for the Nd compound that N goes into two sites in two or more phases of varying fractional N occupations. For the Y compound N occupies only one site. Electronic-structure calculations for Y2Fe17 and Y2Fe17N3 give excellent results for site-dependent Fe moments, and, with spin-fluctuation theory, explain the large change in the Curie temperature on nitrogenation

    Structural, Magnetic and Transport Properties of B-Site Substituted Perovskite La0.7Sr0.3MnO3

    Get PDF
    In this chapter, in order to understand the structural related magnetic and transport properties of B site substituted perovskites La0.7Sr0.3MnO3 (LSMO), we have systematically investigated the effects of replacing some of the Mn with nonmagnetic elements Ti, Zr, Cu, Al, Zn and magnetic elements Co, Ni, Cr, Fe. The structural, magnetic and electrical phase transitions and transport properties of these compounds were investigated by neutron diffraction, magnetization and electric resistivity measurements

    Large Orbital Magnetic Moment and Coulomb Correlation effects in FeBr2

    Full text link
    We have performed an all-electron fully relativistic density functional calculation to study the magnetic properties of FeBr2. We show for the first time that the correlation effect enhances the contribution from orbital degrees of freedom of dd electrons to the total magnetic moment on Fe2+^{2+} as opposed to common notion of nearly total quenching of the orbital moment on Fe2+^{2+} site. The insulating nature of the system is correctly predicted when the Hubbard parameter U is included. Energy bands around the gap are very narrow in width and originate from the localized Fe-3dd orbitals, which indicates that FeBr2 is a typical example of the Mott insulator.Comment: 4 pages, 3 figures, revtex4, PRB accepte
    corecore