71 research outputs found

    A single biopsy is valid for genetic diagnosis of eosinophilic esophagitis regardless of tissue preservation or location in the esophagus

    Get PDF
    A new gene expression profile test may distinguish eosinophilic esophagitis (EoE) and gastroesophageal reflux disease (GERD), but the optimal tissue preparation and biopsy location are unknown. We aimed to determine if formalin-fixed paraffin-embedded (FFPE) and RNA-later (RNAL) preserved specimens from newly diagnosed EoE patients have equivalent gene expression scores and whether scores vary by esophageal biopsy location

    The PPCD1 Mouse: Characterization of a Mouse Model for Posterior Polymorphous Corneal Dystrophy and Identification of a Candidate Gene

    Get PDF
    The PPCD1 mouse, a spontaneous mutant that arose in our mouse colony, is characterized by an enlarged anterior chamber resulting from metaplasia of the corneal endothelium and blockage of the iridocorneal angle by epithelialized corneal endothelial cells. The presence of stratified multilayered corneal endothelial cells with abnormal patterns of cytokeratin expression are remarkably similar to those observed in human posterior polymorphous corneal dystrophy (PPCD) and the sporadic condition, iridocorneal endothelial syndrome. Affected eyes exhibit epithelialized corneal endothelial cells, with inappropriate cytokeratin expression and proliferation over the iridocorneal angle and posterior cornea. We have termed this the “mouse PPCD1” phenotype and mapped the mouse locus for this phenotype, designated “Ppcd1”, to a 6.1 Mbp interval on Chromosome 2, which is syntenic to the human Chromosome 20 PPCD1 interval. Inheritance of the mouse PPCD1 phenotype is autosomal dominant, with complete penetrance on the sensitive DBA/2J background and decreased penetrance on the C57BL/6J background. Comparative genome hybridization has identified a hemizygous 78 Kbp duplication in the mapped interval. The endpoints of the duplication are located in positions that disrupt the genes Csrp2bp and 6330439K17Rik and lead to duplication of the pseudogene LOC100043552. Quantitative reverse transcriptase-PCR indicates that expression levels of Csrp2bp and 6330439K17Rik are decreased in eyes of PPCD1 mice. Based on the observations of decreased gene expression levels, association with ZEB1-related pathways, and the report of corneal opacities in Csrp2bptm1a(KOMP)Wtsi heterozygotes and embryonic lethality in nulls, we postulate that duplication of the 78 Kbp segment leading to haploinsufficiency of Csrp2bp is responsible for the mouse PPCD1 phenotype. Similarly, CSRP2BP haploinsufficiency may lead to human PPCD

    No Pathogenic Mutations Identified in the COL8A2 Gene or Four Positional Candidate Genes in Patients with Posterior Polymorphous Corneal Dystrophy

    Get PDF
    PURPOSE. To identify the genetic basis of posterior polymorphous corneal dystrophy (PPCD) through screening of four positional candidate genes and the COL8A2 gene, in which a presumed pathogenic mutation has previously been identified in affected patients. METHODS. DNA extraction, PCR amplification, and direct sequencing of the COL8A2, BFSP1, CST3, MMP9, and SLPI genes were performed in 14 unrelated, affected patients and in unaffected family members. RESULTS. In the COL8A2 gene, the previously identified, presumed pathogenic mutation (Gln455Lys) was not discovered in any of the affected patients. A missense mutation, Thr502Met, was identified in 2 of the 14 affected probands, although it was not considered to be pathogenic, as it has been identified in unaffected individuals. Although several novel and previously identified single nucleotide polymorphisms producing synonymous and missense amino acid substitutions were identified in the COL8A2, BFSP1, CST3, MMP9, and SLPI genes, no presumed pathogenic sequence variants were found. CONCLUSIONS. No pathogenic mutations were identified in the COL8A2 gene or in several positional candidate genes in a series of patients with PPCD, indicating that other genetic factors are involved in the development of this autosomal dominant corneal dystrophy. (Invest Ophthalmol Vis Sci

    Application of Homozygosity Haplotype Analysis to Genetic Mapping with High-Density SNP Genotype Data

    Get PDF
    BACKGROUND: In families segregating a monogenic genetic disorder with a single disease gene introduction, patients share a mutation-carrying chromosomal interval with identity-by-descent (IBD). Such a shared chromosomal interval or haplotype, surrounding the actual pathogenic mutation, is typically detected and defined by multipoint linkage and phased haplotype analysis using microsatellite or SNP genotype data. High-density SNP genotype data presents a computational challenge for conventional genetic analyses. A novel non-parametric method termed Homozygosity Haplotype (HH) was recently proposed for the genome-wide search of the autosomal segments shared among patients using high density SNP genotype data. METHODOLOGY/PRINCIPAL FINDINGS: The applicability and the effectiveness of HH in identifying the potential linkage of disease causative gene with high-density SNP genotype data were studied with a series of monogenic disorders ascertained in eastern Canadian populations. The HH approach was validated using the genotypes of patients from a family affected with a rare autosomal dominant disease Schnyder crystalline corneal dystrophy. HH accurately detected the approximately 1 Mb genomic interval encompassing the causative gene UBIAD1 using the genotypes of only four affected subjects. The successful application of HH to identify the potential linkage for a family with pericentral retinal disorder indicates that HH can be applied to perform family-based association analysis by treating affected and unaffected family members as cases and controls respectively. A new strategy for the genome-wide screening of known causative genes or loci with HH was proposed, as shown the applications to a myoclonus dystonia and a renal failure cohort. CONCLUSIONS/SIGNIFICANCE: Our study of the HH approach demonstrates that HH is very efficient and effective in identifying potential disease linked region. HH has the potential to be used as an efficient alternative approach to sequencing or microsatellite-based fine mapping for screening the known causative genes in genetic disease study

    Posterior polymorphous corneal dystrophy is associated with TCF8 gene mutations and abdominal hernia How to cite this article: Aldave AJ, Yellore VS, Yu F, Bourla N, Sonmez B, Salem AK, Rayner SA, Sampat KM, Krafchak CM, Richards JE. 2007. Posterior polymorphous corneal dystrophy is associated with TCF8 gene mutations and abdominal hernia. Am J Med Genet Part A 143A:2549–2556.

    Full text link
    Mutations in the two-handed zinc-finger homeodomain transcription factor gene ( TCF8 ) have been associated with posterior polymorphous corneal dystrophy (PPCD) and extraocular developmental abnormalities. We performed screening of TCF8 in 32 affected, unrelated probands, affected and unaffected family members of probands identified with a TCF8 mutation, and in 100 control individuals. Eight different pathogenic mutations were identified in eight probands: four frameshift (c.953_954insA, c.1506dupA, c.1592delA, and c.3012_3013delAG); three nonsense (Gln12X, Gln214X, Arg325X); and one missense (Met1Arg). Screening of TCF8 in affected and unaffected family members in six families demonstrated that each identified mutation segregated with the disease phenotype in each family; two probands did not have additional family members available for analysis. None of the eight TCF8 mutations was identified in 200 control chromosomes. The prevalence of hernias of the abdominal region in affected individuals with PPCD associated with TCF8 mutations was significantly higher than the prevalence in both individuals with PPCD not associated with a TCF8 mutation and in unaffected individuals. Therefore, PPCD is associated with TCF8 mutations in one quarter of affected families in this study, or about one third of all PPCD families that have been screened thus far. In these families, the presence of apparently causative TCF8 mutations is associated with abdominal and inguinal hernias. © 2007 Wiley-Liss, Inc.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/57405/1/31978_ftp.pd

    Descemet membrane endothelial keratoplasty with a stromal rim in the treatment of posterior polymorphous corneal dystrophy

    No full text
    A 20-year-old patient, diagnosed with posterior polymorphous corneal dystrophy, developed corneal edema for which he underwent Descemet membrane endothelial keratoplasty with a stromal rim (DMEK-S) in the right eye. No intra- or postoperative complications were noted. At the last follow-up 2 years and 9 months after the procedure, the best corrected visual acuity was 1.0 and endothelial cell density declined from 3533 cells/mm2 to 1012 cells/mm2. Despite the endothelial cell loss, DMEK-S appears to be a good alternative to other surgical techniques for the treatment of corneal endotheliopathies, and it may be of benefit to young patients
    • …
    corecore