627 research outputs found

    Terrestrial Effects of Nearby Supernovae: Updated Modeling

    Full text link
    We have re-evaluated recent studies of effects on Earth by cosmic rays (CRs) from nearby supernovae (SNe) at 100 pc and 50 pc, in the diffusive transport CR case, here including an early time suppression at lower CR energies neglected in the previous work. Inclusion of this suppression leads to lower overall CR flux at early times, lower atmospheric ionization, smaller resulting ozone depletion, and lower sea-level muon radiation dose. Differences in atmospheric impacts are most pronounced for the 100 pc case with less significant differences in the 50 pc case. We find a greater discrepancy in the modeled sea-level muon radiation dose, with significantly smaller dose values in the 50 pc case; our results indicate it is unlikely that muon radiation is a significant threat to the biosphere for SNe beyond at least 20 pc. We have also performed new modeling of effects by SNe at 20 pc and 10 pc. Overall, our results indicate that, considering only effects of SN CRs, the "lethal" SN distance may be closer to 20 pc rather than the typically quoted 8-10 pc.Comment: 21 pages, 6 figures; submitted to Ap

    Analysis of Randomised Trials Including Multiple Births When Birth Size Is Informative

    Get PDF
    BACKGROUND: Informative birth size occurs when the average outcome depends on the number of infants per birth. Although analysis methods have been proposed for handling informative birth size, their performance is not well understood. Our aim was to evaluate the performance of these methods and to provide recommendations for their application in randomised trials including infants from single and multiple births. METHODS: Three generalised estimating equation (GEE) approaches were considered for estimating the effect of treatment on a continuous or binary outcome: cluster weighted GEEs, which produce treatment effects with a mother-level interpretation when birth size is informative; standard GEEs with an independence working correlation structure, which produce treatment effects with an infant-level interpretation when birth size is informative; and standard GEEs with an exchangeable working correlation structure, which do not account for informative birth size. The methods were compared through simulation and analysis of an example dataset. RESULTS: Treatment effect estimates were affected by informative birth size in the simulation study when the effect of treatment in singletons differed from that in multiples (i.e. in the presence of a treatment group by multiple birth interaction). The strength of evidence supporting the effectiveness of treatment varied between methods in the example dataset. CONCLUSIONS: Informative birth size is always a possibility in randomised trials including infants from both single and multiple births, and analysis methods should be pre-specified with this in mind. We recommend estimating treatment effects using standard GEEs with an independence working correlation structure to give an infant-level interpretation

    Detailed characterization of the O-linked glycosylation of the neuropilin-1 c/MAM-domain

    Get PDF
    Neuropilins are involved in angiogenesis and neuronal development. The membrane proximal domain of neuropilin-1, called c or MAM domain based on its sequence conservation, has been implicated in neuropilin oligomerization required for its function. The c/MAM domain of human neuropilin-1 has been recombinantly expressed to allow for investigation of its propensity to engage in molecular interactions with other protein or carbohydrate components on a cell surface. We found that the c/MAM domain was heavily O-glycosylated with up to 24 monosaccharide units in the form of disialylated core 1 and core 2 O-glycans. Attachment sites were identified on the chymotryptic c/MAM peptide ETGATEKPTVIDSTIQSEFPTY by electron-transfer dissociation mass spectrometry (ETD-MS/MS). For highly glycosylated species consisting of carbohydrate to about 50 %, useful results could only be obtained upon partial desialylation. ETD-MS/MS revealed a hierarchical order of the initial O-GalNAc addition to the four different glycosylation sites. These findings enable future functional studies about the contribution of the described glycosylations in neuropilin-1 oligomerization and the binding to partner proteins as VEGF or galectin-1. As a spin-off result the sialidase from Clostridium perfringens turned out to discriminate between galactose- and N-acetylgalactosamine-linked sialic acid

    Importance of adequate sample sizes in fatty acid intervention trials

    Get PDF
    Abstract not availableLisa N. Yelland, Maria Makrides, Andrew J. McPhee, Julie Quinlivan, Robert A. Gibso

    Experimental investigation of NO reburning during oxy-coal burner staging

    Get PDF
    This study presents an investigation into the impact of varied burner staging environments on an oxy-fuel flame and the rate of the NO formation and destruction processes. The experimental data was extracted from the use of a 250 kWth down-fired combustion test facility with a scaled-down model of an industrial low-NOx burner (LNB). Two oxy-coal combustion regimes were investigated by varying a fixed flow of oxidant between the secondary and tertiary registers, so as to impact the stoichiometry in the fuel-rich region and flame structure, and using various NO recycling regimes, to test the impact of these different burner configurations on NO reburning. The data was collected by monitoring key emissions in the flue gas and in the flame, as well as temperatures throughout the furnace and the unburned carbon content of the ash. A detailed investigation encompassing the impact of secondary oxidant proportion for different oxidants on NO emissions, together with the quantification of recycled NO destruction, is discussed. This investigation finds that 85 % to 95 % of the recycled NO is destroyed at a range of burner configurations using OF 27 and OF 30 at 170 kWth. In addition to this, NO formation and carbon burnout are found to be significantly affected with changing burner configurations. Further to this, OF 30 flames appear to be more sensitive to burner configuration than OF 27 flames with regards to both NO formation and destruction, possibly due to the decreased density of the OF 30 oxidant. Radial profiles of two burner configurations at OF 27 and OF 30, as well as an axial profile of two burner configurations at OF 30, are analysed. The profiles appear to show that burner staging aids in controlling the products of NO reburning, hence maximising the destruction of recycled NO

    Comparison of dichotomized and distributional approaches in rare event clinical trial design: a fixed Bayesian design

    Get PDF
    Accepted 14 July 2016This research was motivated by our goal to design an efficient clinical trial to compare two doses of docosahexaenoic acid supplementation for reducing the rate of earliest preterm births (ePTB) and/or preterm births (PTB). Dichotomizing continuous gestational age (GA) data using a classic binomial distribution will result in a loss of information and reduced power. A distributional approach is an improved strategy to retain statistical power from the continuous distribution. However, appropriate distributions that fit the data properly, particularly in the tails, must be chosen, especially when the data are skewed. A recent study proposed a skew-normal method. We propose a three-component normal mixture model and introduce separate treatment effects at different components of GA. We evaluate operating characteristics of mixture model, beta-binomial model, and skew-normal model through simulation. We also apply these three methods to data from two completed clinical trials from the USA and Australia. Finite mixture models are shown to have favorable properties in PTB analysis but minimal benefit for ePTB analysis. Normal models on log-transformed data have the largest bias. Therefore we recommend finite mixture model for PTB study. Either finite mixture model or beta-binomial model is acceptable for ePTB study.Yang Lei, Susan Carlson, Lisa N. Yelland, Maria Makrides, Robert Gibson and Byron J. Gajewsk

    Superconductivity induced by spark erosion in ZrZn2

    Full text link
    We show that the superconductivity observed recently in the weak itinerant ferromagnet ZrZn2 [C. Pfleiderer et al., Nature (London) 412, 58 (2001)] is due to remnants of a superconducting layer induced by spark erosion. Results of resistivity, susceptibility, specific heat and surface analysis measurements on high-quality ZrZn2 crystals show that cutting by spark erosion leaves a superconducting surface layer. The resistive superconducting transition is destroyed by chemically etching a layer of 5 microns from the sample. No signature of superconductivity is observed in rho(T) of etched samples at the lowest current density measured, J=675 Am-2, and at T < 45 mK. EDX analysis shows that spark-eroded surfaces are strongly Zn depleted. The simplest explanation of our results is that the superconductivity results from an alloy with higher Zr content than ZrZn2.Comment: Final published versio

    Comparison of two closed-path cavity-based spectrometers for measuring air-water CO<inf>2</inf> and CH<inf>4</inf> fluxes by eddy covariance

    Get PDF
    In recent years several commercialised closed-path cavity-based spectroscopic instruments designed for eddy covariance flux measurements of carbon dioxide (CO2), methane (CH4), and water vapour (H2O) have become available. Here we compare the performance of two leading models - the Picarro G2311-f and the Los Gatos Research (LGR) Fast Greenhouse Gas Analyzer (FGGA) at a coastal site. Both instruments can compute dry mixing ratios of CO2 and CH4 based on concurrently measured H2O, temperature, and pressure. Additionally, we used a high throughput Nafion dryer to physically remove H2O from the Picarro airstream. Observed air-sea CO2 and CH4 fluxes from these two analysers, averaging about 12 and 0.12 mmol m-2 day-1 respectively, agree within the measurement uncertainties. For the purpose of quantifying dry CO2 and CH4 fluxes downstream of a long inlet, the numerical H2O corrections appear to be reasonably effective and lead to results that are comparable to physical removal of H2O with a Nafion dryer in the mean. We estimate the high-frequency attenuation of fluxes in our closed-path set-up, which was relatively small (≀ 10 %) for CO2 and CH4 but very large for the more polar H2O. The Picarro showed significantly lower noise and flux detection limits than the LGR. The hourly flux detection limit for the Picarro was about 2 mmol m-2 day-1 for CO2 and 0.02 mmol m-2 day-1 for CH4. For the LGR these detection limits were about 8 and 0.05 mmol m-2 day-1. Using global maps of monthly mean air-sea CO2 flux as reference, we estimate that the Picarro and LGR can resolve hourly CO2 fluxes from roughly 40 and 4 % of the world's oceans respectively. Averaging over longer timescales would be required in regions with smaller fluxes. Hourly flux detection limits of CH4 from both instruments are generally higher than the expected emissions from the open ocean, though the signal to noise of this measurement may improve closer to the coast

    Wind, convection and fetch dependence of gas transfer velocity in an Arctic sea‐ice lead determined from eddy covariance CO 2 flux measurements

    Get PDF
    The air‐water exchange of trace gases such as CO2 is usually parameterized in terms of a gas transfer velocity, which can be derived from direct measurements of the air‐sea gas flux. The transfer velocity of poorly soluble gases is driven by near‐surface ocean turbulence, which may be enhanced or suppressed by the presence of sea ice. A lack of measurements means that air‐sea fluxes in polar regions, where the oceanic sink of CO2 is poorly known, are generally estimated using open‐ocean transfer velocities scaled by ice fraction. Here, we describe direct determinations of CO2 gas transfer velocity from eddy covariance flux measurements from a mast fixed to ice adjacent to a sea‐ice lead during the summer‐autumn transition in the central Arctic Ocean. Lead water CO2 uptake is determined using flux footprint analysis of water‐atmosphere and ice‐atmosphere flux measurements made under conditions (low humidity and high CO2 signal) that minimise errors due to humidity cross‐talk. The mean gas transfer velocity is found to have a quadratic dependence on wind speed: k660 = 0.179 U102 which is 30% lower than commonly used open‐ocean parameterizations. As such, current estimates of polar ocean carbon uptake likely overestimate gas exchange rates in typical summertime conditions of weak convective turbulence. Depending on the footprint model chosen, the gas transfer velocities also exhibit a dependence on the dimension of the lead, via its impact on fetch length and hence sea state. Scaling transfer velocity parameterizations for regional gas exchange estimates may therefore require incorporating lead width data
    • 

    corecore