21 research outputs found

    Synthesis and biologic properties of hydrophilic sapphyrins, a new class of tumor-selective inhibitors of gene expression

    Get PDF
    BACKGROUND: Sapphyrin analogues and related porphyrin-like species have attracted attention as anticancer agents due to their selective localization in various cancers, including hematologic malignancies, relative to surrounding tissues. Sapphyrins are electron affinic compounds that generate high yields of singlet oxygen formation. Although initially explored in the context of photodynamic therapy, sapphyrins have intrinsic anticancer activity that is independent of their photosensitizing properties. However, the mechanisms for their anticancer activity have not been fully elucidated. RESULTS: We have prepared a series of hydrophilic sapphyrins and evaluated their effect on proliferation, uptake, and cell death in adherent human lung (A549) and prostate (PC3) cancer cell lines and in an A549 xenograft tumor model. PCI-2050, the sapphyrin derivative with the highest in vitro growth inhibitory activity, significantly lowered 5-bromo-2'-deoxyuridine incorporation in S-phase A549 cells by 60% within eight hours and increased levels of reactive oxygen species within four hours. The growth inhibition pattern of PCI-2050 in the National Cancer Institute 60 cell line screen correlated most closely using the COMPARE algorithm with known transcriptional or translational inhibitors. Gene expression analyses conducted on A549 plateau phase cultures treated with PCI-2050 uncovered wide-spread decreases in mRNA levels, which especially affected short-lived transcripts. Intriguingly, PCI-2050 increased the levels of transcripts involved in RNA processing and trafficking, transcriptional regulation, and chromatin remodeling. We propose that these changes reflect the activation of cellular processes aimed at countering the observed wide-spread reductions in transcript levels. In our A549 xenograft model, the two lead compounds, PCI-2050 and PCI-2022, showed similar tumor distributions despite differences in plasma and kidney level profiles. This provides a possible explanation for the better tolerance of PCI-2022 relative to PCI-2050. CONCLUSION: Hydrophilic sapphyrins were found to display promise as novel agents that localize to tumors, generate oxidative stress, and inhibit gene expression

    Role of HIF-1α in Alcohol-Mediated Multiple Organ Dysfunction

    No full text
    Excess alcohol consumption is a global crisis contributing to over 3 million alcohol-related deaths per year worldwide and economic costs exceeding $200 billion dollars, which include productivity losses, healthcare, and other effects (e.g., property damages). Both clinical and experimental models have shown that excessive alcohol consumption results in multiple organ injury. Although alcohol metabolism occurs primarily in the liver, alcohol exposure can lead to pathophysiological conditions in multiple organs and tissues, including the brain, lungs, adipose, liver, and intestines. Understanding the mechanisms by which alcohol-mediated organ dysfunction occurs could help to identify new therapeutic approaches to mitigate the detrimental effects of alcohol misuse. Hypoxia-inducible factor (HIF)-1 is a transcription factor comprised of HIF-1α and HIF-1β subunits that play a critical role in alcohol-mediated organ dysfunction. This review provides a comprehensive analysis of recent studies examining the relationship between HIF-1α and alcohol consumption as it relates to multiple organ injury and potential therapies to mitigate alcohol’s effects

    Exhaled Breath Condensate: A Promising Source for Biomarkers of Lung Disease

    Get PDF
    Exhaled breath condensate (EBC) has been increasingly studied as a noninvasive research method for sampling the alveolar and airway space and is recognized as a promising source of biomarkers of lung diseases. Substances measured in EBC include oxidative stress and inflammatory mediators, such as arachidonic acid derivatives, reactive oxygen/nitrogen species, reduced and oxidized glutathione, and inflammatory cytokines. Although EBC has great potential as a source of biomarkers in many lung diseases, the low concentrations of compounds within the EBC present challenges in sample collection and analysis. Although EBC is viewed as a noninvasive method for sampling airway lining fluid (ALF), validation is necessary to confirm that EBC truly represents the ALF. Likewise, a dilution factor for the EBC is needed in order to compare across subjects and determine changes in the ALF. The aims of this paper are to address the characteristics of EBC; strategies to standardize EBC sample collection and review available analytical techniques for EBC analysis

    Chronic-Alcohol-Abuse-Induced Oxidative Stress in the Development of Acute Respiratory Distress Syndrome

    Get PDF
    Chronic alcohol ingestion increases the risk of developing acute respiratory distress syndrome (ARDS), a severe form of acute lung injury, characterized by alveolar epithelial and endothelial barrier disruption and intense inflammation. Alcohol abuse is also associated with a higher incidence of sepsis or pneumonia resulting in a higher rate of admittance to intensive care, longer inpatient stays, higher healthcare costs, and a 2–4 times greater mortality rate. Chronic alcohol ingestion induced severe oxidative stress associated with increased ROS generation, depletion of the critical antioxidant glutathione (GSH), and oxidation of the thiol/disulfide redox potential in the alveolar epithelial lining fluid and exhaled breath condensate. Across intracellular and extracellular GSH pools in alveolar type II cells and alveolar macrophages, chronic alcohol ingestion consistently induced a 40–60 mV oxidation of GSH/GSSG suggesting that the redox potentials of different alveolar GSH pools are in equilibrium. Alcohol-induced GSH depletion or oxidation was associated with impaired functions of alveolar type II cells and alveolar macrophages but could be reversed by restoring GSH pools in the alveolar lining fluid. The aims of this paper are to address the mechanisms for alcohol-induced GSH depletion and oxidation and the subsequent effects in alveolar barrier integrity, modulation of the immune response, and apoptosis

    Paired ATAC- and RNA-seq offer insight into the impact of HIV on alveolar macrophages: a pilot study

    No full text
    Abstract People with HIV remain at greater risk for both infectious and non-infectious pulmonary diseases even after antiretroviral therapy initiation and CD4 cell count recovery. These clinical risks reflect persistent HIV-mediated defects in innate and adaptive immunity, including in the alveolar macrophage, a key innate immune effector in the lungs. In this proof-of-concept pilot study, we leveraged paired RNA-seq and ATAC-seq analyses of human alveolar macrophages obtained with research bronchoscopy from people with and without HIV to highlight the potential for recent methodologic advances to generate novel hypotheses about biological pathways that may contribute to impaired pulmonary immune function in people with HIV. In addition to 35 genes that were differentially expressed in macrophages from people with HIV, gene set enrichment analysis identified six gene sets that were differentially regulated. ATAC-seq analysis revealed 115 genes that were differentially accessible for people with HIV. Data-driven integration of the findings from these complementary, high-throughput techniques using xMWAS identified distinct clusters involving lipoprotein lipase and inflammatory pathways. By bringing together transcriptional and epigenetic data, this analytic approach points to several mechanisms, including previously unreported pathways, that warrant further exploration as potential mediators of the increased risk of pulmonary disease in people with HIV
    corecore