25 research outputs found

    Metal-loaded organic scintillators for neutrino physics

    Full text link
    Organic liquid scintillators are used in many neutrino physics experiments of the past and present. In particular for low energy neutrinos when realtime and energy information are required, liquid scintillators have several advantages compared to other technologies. In many cases the organic liquid needs to be loaded with metal to enhance the neutrino signal over background events. Several metal loaded scintillators of the past suffered from chemical and optical instabilities, limiting the performance of these neutrino detectors. Different ways of metal loading are described in the article with a focus on recent techniques providing metal loaded scintillators that can be used under stable conditions for many years even in ton scale experiments. Applications of metal loaded scintillators in neutrino experiments are reviewed and the performance as well as the prospects of different scintillator types are compared.Comment: 46 pages, 5 figure

    Time Response of Water-based Liquid Scintillator from X-ray Excitation

    Full text link
    Water-based liquid scintillators (WbLS) present an attractive target medium for large-scale detectors with the ability to enhance the separation of Cherenkov and scintillation signals from a single target. This work characterizes the scintillation properties of WbLS samples based on LAB/PPO liquid scintillator (LS). X-ray luminescence spectra, decay profiles, and relative light yields are measured for WbLS of varying LS concentration as well as for pure LS with a range of PPO concentrations up to 90 g/L. The scintillation properties of the WbLS are related to the precursor LAB/PPO: starting from 90 g/L PPO in LAB before synthesis, the resulting WbLS have spectroscopic properties that instead match 10 g/L PPO in LAB. This could indicate that the concentration of active PPO in the WbLS samples depends on their processing.Comment: 6 pages, 7 figures, 2 tables. Submitted to Materials Advances, a journal of the Royal Society of Chemistr

    Lifetimes in \u3csup\u3e124\u3c/sup\u3eTe: Examining Critical-Point Symmetry in the Te Nuclei

    Get PDF
    The Doppler-shift attenuation method following inelastic neutron scattering was used to determine the lifetimes of nuclear levels to 3.3-MeV excitation in 124Te. Level energies and spins, γ-ray energies and branching ratios, and multipole-mixing ratios were deduced from measured γ-ray angular distributions at incident neutron energies of 2.40 and 3.30 MeV, γ-ray excitation functions, and γγ coincidence measurements. The newly obtained reduced transition probabilities and level energies for 124Te were compared to critical-point symmetry model predictions. The E(5) and β4 potential critical-point symmetries were also investigated in 122Te and 126Te

    Physics Potential of a Few Kiloton Scale Neutrino Detector at a Deep Underground Lab in Korea

    Full text link
    The demand for underground labs for neutrino and rare event search experiments has been increasing over the last few decades. Yemilab, constructed in October 2022, is the first deep (∼\sim1~km) underground lab dedicated to science in Korea, where a large cylindrical cavern (D: 20~m, H: 20~m) was excavated in addition to the main caverns and halls. The large cavern could be utilized for a low background neutrino experiment by a liquid scintillator-based detector (LSC) where a 2.26 kiloton LS target would be filled. It's timely to have such a large but ultra-pure LS detector after the shutdown of the Borexino experiment so that solar neutrinos can be measured much more precisely. Interesting BSM physics searches can be also pursued with this detector when it's combined with an electron linac, a proton cyclotron (IsoDAR source), or a radioactive source. This article discusses the concept of a candidate detector and the physics potential of a large liquid scintillator detector.Comment: 63 pages, 36 figures, 8 table

    Muon Flux Measurement at China Jinping Underground Laboratory

    Full text link
    China Jinping Underground Laboratory (CJPL) is ideal for studying solar-, geo-, and supernova neutrinos. A precise measurement of the cosmic-ray background would play an essential role in proceeding with the R\&D research for these MeV-scale neutrino experiments. Using a 1-ton prototype detector for the Jinping Neutrino Experiment (JNE), we detected 264 high-energy muon events from a 645.2-day dataset at the first phase of CJPL (CJPL-I), reconstructed their directions, and measured the cosmic-ray muon flux to be (3.53±0.22stat.±0.07sys.)×10−10(3.53\pm0.22_{\text{stat.}}\pm0.07_{\text{sys.}})\times10^{-10} cm−2^{-2}s−1^{-1}. The observed angular distributions indicate the leakage of cosmic-ray muon background and agree with the simulation accounting for Jinping mountain's terrain. A survey of muon fluxes at different laboratory locations situated under mountains and below mine shaft indicated that the former is generally a factor of (4±2)(4\pm2) larger than the latter with the same vertical overburden. This study provides a convenient back-of-the-envelope estimation for muon flux of an underground experiment
    corecore