11,647 research outputs found

    Laser action generated within a light pipe: A concept

    Get PDF
    Laser light could be generated within light pipe itself, thereby eliminating coupling losses. Theoretical calculations have shown feasibility of light-pipe laser propagating in circularly-polarized TE mode. It is predicted that fiber-optic distributed-feedback laser would have gain on order of 25 dB

    Superconducting Gap and Pseudogap in Iron-Based Layered Superconductor La(O1−x_{1-x}Fx_x)FeAs

    Full text link
    We report high-resolution photoemission spectroscopy of newly-discovered iron-based layered superconductor La(O0.93_{0.93}F0.07_{0.07})FeAs (Tc = 24 K). We found that the superconducting gap shows a marked deviation from the isotropic s-wave symmetry. The estimated gap size at 5 K is 3.6 meV in the s- or axial p-wave case, while it is 4.1 meV in the polar p- or d-wave case. We also found a pseudogap of 15-20 meV above Tc, which is gradually filled-in with increasing temperature and closes at temperature far above Tc similarly to copper-oxide high-temperature superconductors.Comment: 4 pages, 3 figures, J. Phys. Soc. Jpn. Vol. 77, No. 6 (2008), in pres

    Local and macroscopic tunneling spectroscopy of Y(1-x)CaxBa2Cu3O(7-d) films: evidence for a doping dependent is or idxy component in the order parameter

    Full text link
    Tunneling spectroscopy of epitaxial (110) Y1-xCaxBa2Cu3O7-d films reveals a doping dependent transition from pure d(x2-y2) to d(x2-y2)+is or d(x2-y2)+idxy order parameter. The subdominant (is or idxy) component manifests itself in a splitting of the zero bias conductance peak and the appearance of subgap structures. The splitting is seen in the overdoped samples, increases systematically with doping, and is found to be an inherent property of the overdoped films. It was observed in both local tunnel junctions, using scanning tunneling microscopy (STM), and in macroscopic planar junctions, for films prepared by either RF sputtering or laser ablation. The STM measurements exhibit fairly uniform splitting size in [110] oriented areas on the order of 10 nm2 but vary from area to area, indicating some doping inhomogeneity. U and V-shaped gaps were also observed, with good correspondence to the local faceting, a manifestation of the dominant d-wave order parameter

    Analysis of B-> \phi K Decays in QCD Factorization

    Full text link
    We analyze the decay B→ϕKB\to \phi K within the framework of QCD-improved factorization. We found that although the twist-3 kaon distribution amplitude dominates the spectator interactions, it will suppress the decay rates slightly. The weak annihilation diagrams induced by (S−P)(S+P)(S-P)(S+P) penguin operators, which are formally power-suppressed by order (Λ/mb)2(\Lambda/m_b)^2, are chirally and logarithmically enhanced. Therefore, these annihilation contributions are not subject to helicity suppression and can be sizable. The predicted branching ratio of B−→ϕK−B^-\to\phi K^- is (3.8±0.6)×10−6(3.8\pm0.6)\times 10^{-6} in the absence of annihilation contributions and it becomes (4.3−1.4+3.0)×10−6(4.3^{+3.0}_{-1.4})\times 10^{-6} when annihilation effects are taken into account. The prediction is consistent with CLEO and BaBar data but smaller than the BELLE result.Comment: 13 pages, 3 figures. A major change for the presentation of branching-ratio predictions. Experimental data are update

    Microalgae for municipal wastewater nutrient remediation: mechanisms, reactors and outlook for tertiary treatment

    Get PDF
    This review explores the use of microalgae for nutrient removal in municipal wastewater treatment, considering recent improvements in the understanding of removal mechanisms and developments of both suspended and non-suspended systems. Nutrient removal is associated to both direct and indirect uptake, with the former associated to the biomass concentration and growth environment (reactor). Importantly, direct uptake is influenced by the Nitrogen:Phosphorus content in both the cells and the surrounding wastewater, with opposite trends observed for N and P. Comparison of suspended and non-suspended systems revealed that whilst all were capable of achieving high levels of nutrient removal, only non-suspended immobilized systems could do so with reduced hydraulic retention times of less than 1 day. As microalgae are photosynthetic organisms, the metabolic processes associated with nutrient assimilation are driven by light. Optimization of light delivery remains a key area of development with examples of improved mixing in suspended systems and the use of pulsating lights to enhance light utilization and reduce costs. Recent data provide increased confidence in the use of microalgae for nutrient removal in municipal wastewater treatment, enabling effluent discharges below 1 mg L−1 to be met whilst generating added value in terms of bioproducts for energy production or nutrient recovery. Ultimately, the review suggests that future research should focus on non-suspended systems and the determination of the added value potential. In so doing, it is predicted that microalgae systems will be significant in the delivery of the circular economy

    Surface effects on nanowire transport: numerical investigation using the Boltzmann equation

    Full text link
    A direct numerical solution of the steady-state Boltzmann equation in a cylindrical geometry is reported. Finite-size effects are investigated in large semiconducting nanowires using the relaxation-time approximation. A nanowire is modelled as a combination of an interior with local transport parameters identical to those in the bulk, and a finite surface region across whose width the carrier density decays radially to zero. The roughness of the surface is incorporated by using lower relaxation-times there than in the interior. An argument supported by our numerical results challenges a commonly used zero-width parametrization of the surface layer. In the non-degenerate limit, appropriate for moderately doped semiconductors, a finite surface width model does produce a positive longitudinal magneto-conductance, in agreement with existing theory. However, the effect is seen to be quite small (a few per cent) for realistic values of the wire parameters even at the highest practical magnetic fields. Physical insights emerging from the results are discussed.Comment: 15 pages, 7 figure

    Branching ratios of B+→D(∗)+K(∗)0B^+ \to D^{(*)+}K^{(*)0} decays in perturbative QCD approach

    Full text link
    We study the rare decays B+→D(∗)+K(∗)0B^+ \to D^{(*)+}K^{(*)0}, which can occur only via annihilation type diagrams in the standard model. We calculate all of the four modes, B→PP,VP,PV,VVB \to PP, VP, PV, VV, in the framework of perturbative QCD approach and give the branching ratios of the order about 10−610^{-6}.Comment: 18 pages, 1 figure, Revte

    Direct CP Violation in Hadronic B Decays

    Full text link
    There are different approaches for the hadronic B decay calculations, recently. In this paper, we upgrade three of them, namely factorization, QCD factorization and the perturbative QCD approach based on kTk_T factorization, by using new parameters and full wave functions. Although they get similar results for many of the branching ratios, the direct CP asymmetries predicted by them are different, which can be tested by recent experimental measurements of B factories.Comment: 11 pages, 3 figures, revtex4, Talk given at the Workshop on the Frontiers of Theoretical Physics and Cross-Disciplinary, NSFC, Beijing, March 200

    Chalcogen Height Dependence of Magnetism and Fermiology in FeTe_xSe_{1-x}

    Full text link
    FeTexSe1-x (x=0, 0.25, 0.50, 0.75 and 1) system has been studied using density functional theory. Our results show that for FeSe, LDA seems better approximation in terms of magnitude of magnetic energy whereas GGA overestimates it largely. On the other hand for FeTe, GGA is better approximation that gives experimentally observed magnetic state. It has been shown that the height of chalcogen atoms above Fe layers has significant effect on band structure, electronic density of states (DOS) at Fermi level N(EF) and Fermi surfaces. For FeSe the value of N(EF) is small so as to satisfy Stoner criteria for ferromagnetism, (I\timesN(EF)\geq1) whereas for FeTe, since the value of N(EF) is large, the same is close to be satisfied. Force minimization done for FeTexSe1-x using supercell approach shows that in disordered system Se and Te do not share same site and have two distinct z coordinates. This has small effect on magnetic energy but no significant difference in band structure and DOS near EF when calculated using either relaxed or average value of z for chalcogen atoms. Thus substitution of Se at Te site decreases average value of chalcogen height above Fe layers which in turn affect the magnetism and Fermiology in the system. By using coherent-potential approximation for disordered system we found that height of chalcogen atoms above Fe layer rather than chalcogen species or disorder in the anion planes, affect magnetism and shape of Fermi surfaces (FS), thus significantly altering nesting conditions, which govern antiferromagnetic spin fluctuations in the system.Comment: 24 pages Text+Figs: comments/suggestions welcome ([email protected]
    • …
    corecore