29 research outputs found

    Parameter tunning for PBIL algorithm in geometric constraint solving systems

    Get PDF
    In previous works we have shown that applying genetic algorithms to solve the Root Identification Problem is feasible and effective. The behavior of evolutive algorithms is characterized by a set of parameters that have an effect on the algorithms’ performance. In this paper we report on an empirical statistical study conducted to establish the influence of the driving parameters in the Population Based Incremental Learning (PBIL) algorithm when applied to solve the Root Identification Problem. We also identify ranges for the parameters values that optimize the algorithm performance.Postprint (author’s final draft

    Parameter tuning for PBIL and CHC algorithms to solve the root identification problem in geometric constraint solving

    Get PDF
    Evolutive algorithms are among the most successful approaches for solving a number of problems where systematic search in huge domains must be performed. One problem of practical interest that falls into this category is known as emph{The Root Identification Problem} in Geometric Constraint Solving, where one solution to the geometric problem must be selected among a number of possible solutions bounded by an exponential number. In previous works we have shown that applying genetic algorithms, a category of evolutive algorithms, to solve the Root Identification Problem is both feasible and effective. The behavior of evolutive algorithms is characterized by a set of parameters that have an effect on the algorithms' performance. In this paper we report on an empirical statistical study conducted to establish the influence of the driving parameters in the PBIL and CHC evolutive algorithms when applied to solve the Root Identification Problem. We also identify ranges for the parameter values that optimize the algorithms performance.Postprint (published version

    Experimentos y análisis de resultados tras la aplicación de metaheurísticas al problema de la selección de la solución deseada

    Get PDF
    In this work we will conduct an empirical study of the CHC and PBIL metaheuristics performance when applied to solve the Root Identification Problem arised in Geometric Constraint Solving. We identify the main parameters that have an effect on the algorithm performance and determine ranges of values for these parameters that maximize performance.Postprint (published version

    Estudio e implementación de metaheurísticas para solucionar el problema de la selección deseada

    Get PDF
    Evolutionary algorithms are among the most successful approaches for solving a number of problems where systematic search in huge domains must be performed. One problem of practical interest that falls into this category is known as The Root Identification Problem in Geometric Constraint Solving, where one solution to the geometric problem must be selected among a number of possible solutions bounded by an exponential number. In this work we analize habilities and drawbacks of a series of metaheuristics in relation with the Root identification problem.Postprint (published version

    Un modelo de rendimiento de algoritmos evolutivos aplicados a la selección de la solución deseada

    Get PDF
    Tesis Univ. Granada. Departamento de Lenguajes y Sistemas Informáticos. Leída el 27 de marzo de 200

    Estimación y validación de distribuciones de longitud de ejecución para CHC y PBIL aplicados al problema de la selección de la solución deseada

    No full text
    Devising a model to figure out metaheuristics performances when applied to high demanding problems is paramount. Such a model would allow to foresee the computational time required for a given output quality. In previous works we showed that the performance of CHC and PBIL evolutive algorithms fit in a Gamma distribution when applied to solve the Root Identification Problem for search domains bounded by 22020 instances. Here we conduct experimental studies to verify that the Gamma model applies to search spaces of up to 250^50. Then we apply the model to estimate the runtime for search spaces of size up to 2100^100. Finally we run the algorithms and validate the model by comparing the actual runtime values to those yielded by the model.Postprint (published version

    Estimación y validación de distribuciones de longitud de ejecución para CHC y PBIL aplicados al problema de la selección de la solución deseada

    No full text
    Devising a model to figure out metaheuristics performances when applied to high demanding problems is paramount. Such a model would allow to foresee the computational time required for a given output quality. In previous works we showed that the performance of CHC and PBIL evolutive algorithms fit in a Gamma distribution when applied to solve the Root Identification Problem for search domains bounded by 22020 instances. Here we conduct experimental studies to verify that the Gamma model applies to search spaces of up to 250^50. Then we apply the model to estimate the runtime for search spaces of size up to 2100^100. Finally we run the algorithms and validate the model by comparing the actual runtime values to those yielded by the model

    Parameter tunning for PBIL algorithm in geometric constraint solving systems

    No full text
    In previous works we have shown that applying genetic algorithms to solve the Root Identification Problem is feasible and effective. The behavior of evolutive algorithms is characterized by a set of parameters that have an effect on the algorithms’ performance. In this paper we report on an empirical statistical study conducted to establish the influence of the driving parameters in the Population Based Incremental Learning (PBIL) algorithm when applied to solve the Root Identification Problem. We also identify ranges for the parameters values that optimize the algorithm performance

    Predicción del rendimiento de CHC y PBIL aplicados al problema de la solución deseada

    No full text
    El incremento de la complejidad de las instancias del problema de la selección de la solución deseada en resolución de restricciones geométricas supone un aumento considerable del tiempo requerido por las diferentes metaheurísticas para obtener una solución con calidad para el usuario. En tal situación, la predicción del rendimiento de las metaheurísticas puede suponer un importante avance con objeto de acotar tanto el tiempo de ejecución como la calidad de la solución. La caracterización del rendimiento de las metaheurísticas a partir de distribuciones de longitud de tiempo de ejecución (RLDs) representadas por distribuciones estadísticas continuas conocidas permite parametrizar tal predicción. En este trabajo se definirán posibles expresiones para predecir el rendimiento óptimo de las metaheurísticas CHC y PBIL ante instancias desconocidas del problema. Para ello se seleccionará un modelo simple de predicción: la regresión lineal simple, partiendo como base de conocimiento del estudio estadístico exhaustivo del comportamiento óptimo de tales algoritmos ante un conjunto suficientemente representativo de instancias correspondientes a un conjunto reducido de tamaños del problema

    Ajuste, optimización y representación del rendimiento de PBIL y CHC aplicados al problema de la selección de la solución deseada

    No full text
    La optimización del rendimiento de CHC y PBIL en su aplicación al problema de la selección de la solución deseada dentro de la resolución de restricciones geométricas es fundamental. Se hace necesario ajustar los factores que influyen en la evolución de ambos algoritmos y caracterizar tal evolución para su adecuación a cualquier instancia del problema. Los experimentos realizados en trabajos anteriores constataron la influencia individual y conjunta de los factores y seleccionaron los valores más adecuados para los mismos. Además, se caracterizó el comportamiento y rendimiento de los algoritmos en su aplicación al problema a través de las distribuciones de longitud de ejecución empíricas (RLDs) y se comprobó a partir de las pruebas de bondad de ajuste como la distribución estadística continua teórica gamma puede modelar tales RLDs. Sin embargo, el banco de instancias sobre el cual se realizó el estudio pertenece a un único tamaño del problema. Nuestro objetivo ahora es el de contrastar los resultados con bancos de instancias de tamaños próximos. La obtención de un representante del rendimiento óptimo de cada algoritmo para cada tamaño: conjunto de valores óptimos para los factores y distribución continua representativa de las RLDs, permitirá generalizar la aplicación óptima de los algoritmos a cualquier instancia del problema, independientemente de su complejidad.Postprint (published version
    corecore