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eyeguas@uco.es

Abstract—In previous works we have shown
that applying genetic algorithms to solve the Root
Identification Problem is feasible and effective.

The behavior of evolutive algorithms is char-
acterized by a set of parameters that have an
effect on the algorithms’ performance. In this
paper we report on an empirical statistical study
conducted to establish the influence of the driving
parameters in the Population Based Incremental
Learning (PBIL) algorithm when applied to solve
the Root Identification Problem. We also identify
ranges for the parameters values that optimize the
algorithm performance.
Key-words: Parameter optimization, Evolutive al-
gorithms, Geometric Constraint Solving, Root
Identification Problem.

I. INTRODUCTION

Modern computer aided design and manufac-
turing systems are built on top of parametric
geometric modeling engines. The field has de-
veloped sketching systems that automatically in-
stantiate geometric objects from a rough sketch,
annotated with dimensions and constraints input

by the user. The sketch only has to be topolog-
ically correct and constraints are normally not
yet satisfied.

Geometric problems defined by constraints
have an exponential number of solution in-
stances in the number of geometric elements
involved. Generally, the user is only interested
in one instance such that besides fulfilling the
geometric constraints, exhibits some additional
properties. This solution instance is called the
intended solution.

Selecting a solution instance amounts to se-
lecting one among a number of different roots
of a nonlinear equation or system of equations.
The problem of selecting a given root was named
by Boumaet al. in [3] the Root Identification
Problem.

Luzónet al. [10], reported on a new technique
to automatically solve the Root Identification
Problem for constructive solvers, [7]. The tech-
nique overconstrains the geometric problem by
defining two different categories of constraints.
One category includes the set of constraints
specifically needed to solve the geometric con-



straint problem. The other category includes a
set of extra constraints or predicates on the
geometric elements which identify the intended
solution instance. Once the constructive solver
has generated the space of solution instances, the
extra constraints are used to drive an automatic
search of the solution instances space using
genetic algorithms, [11]. The search outputs a
solution instance that maximizes the number of
extra constraints fulfilled.

Genetic algorithms are characterized by a
set of parameters which determine their evo-
lution and for which specific values must be
chosen, [1]. Furthermore, when parameters are
chosen by trial and error, the relationship be-
tween their values and the performance of the
algorithm cannot be established.

PBIL algorithm is a method that combines
generational mechanisms with simple compet-
itive learning. It is argued that this algorithm is
simple and outperforms basic genetic algorithms
on a large set of optimization problems.

In this paper we study how PBIL algorithm
performs when it is applied to solve the Root
Identification Problem. We also explore the pos-
sibility of identifying ranges for the values as-
signed to the parameters for which this algorithm
shows an optimal performance.

The remainder of this work is organized as
follows. Section II briefly describes the main
concepts involved in the Root Identification
Problem. Section III briefly describes the PBIL
algorithm. Section IV describes the experimental
set up. Experimental results are discussed in
Section V, leaving Section VI to draw some
conclusions and to suggest future work.

II. T HE ROOT IDENTIFICATION PROBLEM

The problem we are facing is known as the
Root Identification Problemand consists in se-
lecting one solution to a system of nonlinear
equations among a potentially exponential num-
ber of solutions, that is to select one root for
each equation in the system.

In two-dimensional constraint-based geomet-
ric design, the designer creates a rough sketch
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Fig. 1. Geometric problem defined by constraints.

of an object made out of simple geometric
elements like points, lines, circles and arcs of
circle. Then the intended exact shape is specified
by annotating the sketch with constraints like
distance between two points, distance from a
point to a line, angle between two lines, line-
circle tangency and so on. Figure 1 shows an
example of a geometric constraint problem.

Once the user has defined the sketch and the
set of constraints, a geometric constraint solver
checks whether the set of geometric constraints
coherently defines the object and, if so, deter-
mines the position of the geometric elements.

Among all the geometric constraint solving
techniques, our interest focuses on the one
known asconstructive, [7].

III. T HE PBIL ALGORITHM

In previous works, [15], we conducted a pre-
liminary study to asses the potential behavior
of a number of metaheuristics applied to solve
the Root Identification Problem. The study con-
sidered trajectory-based and population-based
metaheuristics. The results shown that the most
promising algorithms were clearly in the second
category, specifically PBIL, an evolutive prob-
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abilistic method, and CHC [6], a genetic algo-
rithm. Due to space limitations we will focus on
the former algorithm.

The PBIL algorithm, Baluja [2], is an evolu-
tionary algorithm that uses a probability vector
to describe the population of the genetic algo-
rithm. In a binary encoded solutions string, the
probability vector specifies the probability of
each bit position containing a ’1’. The probabil-
ity of a bit position containing a ’0’ is obtained
by subtracting the probability specified in the
vector from 1.0.

In genetic algorithms, operations are defined
and performed on the population. In PBIL, op-
erations take place directly on the probability
vector which is used to derive a population. The
mechanisms used in PBIL are derived from those
used in competitive learning. The aim of PBIL
is to actively create a probability vector which,
with high probability, represents a population of
high evaluation vectors. In a manner similar to
the training of a competitive learning network,
the values in the probability vector are gradu-
ally shifted towards representing those in high
evaluation vectors.

Figure 2 shows the PBIL algorithm used in
this study. According to Baluja, [1], the main
parameters affecting the PBIL algorithm evolu-
tion are,

• Population size (N): number of samples in
the population that must be generated per
generation.

• Mutation probability (MP): probability of
mutation ocurring in each samples’ posi-
tion. Values are in[0, 1].

• Mutation shift (MS): amount for mutation to
affect the probability vector shifting. Values
are defined in[0, 1].

• Learning rate (LR): Learning rate that reg-
ulates the speed with which the probability
vector approaches to the best found solu-
tion. Values are in[0, 1].

In general, the length of the string that encodes
the individuals in the population is a parameter
that depends on the specific problem at hand.
As we will see in Section IV, in our study it has
been fixed.

Procedure PBILalgorithm
INPUT

TMAX: Number of iterations
N : Population size
LENGTH : Chromosome length
MP: Mutation probability
MS: Mutation shift
LR: Learning rate

OUTPUT
P: Probability vector
BS: Population best chromosome

# Inicialize probability vector
for i in [1..LENGTH] do

P(i) := 0.5
# Algorithm evolution
for j in [1..TMAX] do

for i in [1..N] do
GenerateSampleVector (P, sample(i))
EvaluateSample (sample(i), evaluation(i))

FindBestSample(sample, evaluation, BS)
# Update probability vector
for i in [1..LENGTH] do

P(i) := P(i) * (1.0 - LR) + BS(i) * LR
# Mutate probability vector
for i in [1..LENGTH] do

if (random(0,1]< MP) then
rshift := ChooseOneRandomly (0.0, 1.0)
P(i) := P(i) * (1.0 - MS) + rshift * MS

EndProcedure

Fig. 2. Basic PBIL algorithm.

The PBIL algorithm returns both the probabil-
ity vector and the corresponding vector sample
with the best evaluation.

IV. D ESIGN OF THEEXPERIMENTS

To study the behaviour of the PBIL algorithm
as a function of the parameters we have applied
an empirical methodology along with an statis-
tical analysis of variance of the experimental
results.

Since investigating the behavior of the genetic
algorithms with all parameters variable would
be hard to accomplish, we will focus on those
parameters whose influence on the evolutive
algorithms are considered as fundamental listed
in Section III.

These parameters are calledfactors. The fac-
tor levels are the set of discrete different val-
ues assigned to a factor in an experiment. For
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Values

N 10 20 30 40 50 60 70
LR 0.05 0.10 0.15 0.20 0.25
MP 0.01 0.025 0.05 0.075 0.10
MS 0.01 0.025 0.05 0.075 0.10

TABLE I
FACTOR LEVELS.

each factor studied, several levels have been
considered. They are shown in Table I for PBIL.
The levels for the population size have been
taken from previous work reported by Yeguas
et al. in [15]. The levels for the remaining
parameters have been chosen as follows. First,
for each parameter, a central value has been
selected among those suggested by the specific
literature (see Baluja, [1]). Then we defined a
number of additional levels (four or six) evenly
distributed with respect to the central value. Half
of them smaller and half of them greater than the
central value.

We have considered a representative bench-
mark including 29 different geometric problems
defined by constraints each with 18 geometric
elements. Therefore, the length of the string that
encodes the individuals in the population is 18
and the size of the search space is bounded by
216 different solution instances, [3].

The run of an algorithm on a problem with
an specific assignment of factors level to the
parameters is called atreatment.

We say that a treatment is successful if and
only if the algorithm has found a solution that
fulfills all the extra constraints defined to select
the intended solution before reaching the maxi-
mum number of evaluations allowed,rlmax. In
our experiments this value was set to 30000
evaluations. For each treatment we recorded the
actual number of evaluations performed, therun-
length.

An observationis the mean run length esti-
mated as

Ê(RL) =
1

k
Σk

i=1rli +
(n − k)

k
rlmax

wherek is the number of successful runs andrli
is the run-length of theith successful run, [8].

The total number of runs wasn = 50 each
triggered with an initial random seed.

To guarantee that the samples fulfil the re-
quirements of normality and variance, [4], it
was decided to perform 50 observations for
each treatment and each problem. This exper-
imental setup yielded 875 series (one series for
each treatment considered) of run-length values,
Ê(RL), each with 50 observations.

To elucidate the influence of the parameters
on the algorithms performance, we have con-
ducted a comprehensive statistical analysis of
the empirical results by using the ANalysis Of
VAriance (ANOVA), [4]. The independent vari-
ables are the algorithm parameters and the de-
pendent variable is the mean run-length,Ê(RL),
required to find a solution.

V. RESULTS OFPBIL ALGORITHM

To assess the behaviour of the PBIL algorithm
we have conducted unifactorial analysis, multi-
factorial analysis and post hoc tests.

A. Unifactorial Analysis

We have applied the one way ANOVA anal-
ysis to study the effect of each parameter listed
in Section III: Population Size, (N ), Mutation
Probability, (MP ), Mutation Shift, (MS), and
Learning Rate, (LR) on the mean run-length,
Ê(RL), required for algorithm PBIL to find
a solution. Table II shows the ANOVA results
corresponding to the behavior of PBIL algorithm
for a given problem instance. Starting from the
left most column we have: the set of factors con-
sidered, the sum of squares, number of degrees
of freedom, squared mean, Fisher test statistic
F , and significance level. Unifactorial analysis
results are listed in rows three through six.

Considering the ANOVA tables for the set
of problems in the benchmark, results are con-
sistent and the test of equality of means have
shown a significance level smaller than 0.05 for
each parameter. This means that variations in
each individual parameter level lead to variations
in the mean run-length with a 95% confidence
level.
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Sum of squares Squared
Factors Type III DOF Mean F Sig

Adjusted Model 6.15E+10 874 7.03E+07 340.764 0.000
Intersection 9.12E+10 1 9.12E+10 442060.412 0.000

N 4.36E+10 6 7.26E+09 35179.451 0.000
LR 2.64E+09 4 6.60E+08 3196.267 0.000
MP 1.19E+08 4 2.98E+07 144.486 0.000
MS 3.72E+08 4 9.31E+07 450.839 0.000

N ∗ LR 1.08E+10 24 4.50E+08 2181.185 0.000
N ∗ MP 4.01E+07 24 1.67E+06 8.101 0.000
LR ∗ MP 2.43E+08 16 1.52E+07 73.445 0.000

N ∗ LR ∗ MP 6.08E+08 96 6.33E+06 30.684 0.000
N ∗ DM 1.93E+08 24 8.06E+06 39.025 0.000
LR ∗ DM 3.05E+08 16 1.91E+07 92.478 0.000

N ∗ LR ∗ DM 7.47E+08 96 7.78E+06 37.703 0.000
MP ∗ DM 1.19E+08 16 7.44E+06 36.025 0.000

N ∗ MP ∗ DM 6.92E+07 96 7.21E+05 3.494 0.000
LR ∗ MP ∗ DM 4.16E+08 64 6.49E+06 31.459 0.000

TP ∗ LR ∗ MP ∗ DM 1.23E+09 384 3.20E+06 15.520 0.000

Error 8.85E+09 42875 2.06E+05
Total 1.62E+11 43750

Adjusted Total 7.03E+10 43749

R2 = 0.874 AdjustedR2 = 0.872

TABLE II
EXAMPLE OF ANOVA TABLE FOR PBIL ALGORITHM .

The analysis of theF statistic test showed that
the parameter with the greatest influence on the
mean run-length wasLR in the 82.7% of the
problems studied,N in the 13.7% of the cases,
andMS in the 3.4% of the cases.

B. Multifactorial Analysis

The results of multiple factor ANOVA show
how each parameter and all the possible com-
binations of factors affect the algorithm perfor-
mance and the importance of that influence. In
this study we assume that all factors have the
same importance. Since we are considering four
different factors, see Section III, we have studied
the interaction between factors grouping them
either in pairs, in triplets or the whole set. The
ANOVA Table II, starting in the seventh row,
shows the values for multifactorial analysis for
the PBIL algorithm applied to a given problem
instance in the benchmark.

The significance level in the 70% of the

problems in the benchmark is smaller than 0.05,
therefore interaction between factors is signi-
ficative and they have an effect on the mean
run-length of the PBIL algorithm. However, this
effect is not homogeneous and only those com-
binations of factors whereLR is involved play
a noticiable role. In general, the effect on the
PBIL algorithm performance is smaller when
considering mutifactorial variation than when
considering each of the factors separately.

R2 is the fraction of the total squared error
that is explained by the model. Thus values
approaching one are desirable, [5].R2 values
over the benchmark for PBIL ranged from 0.307
through 0.967 with an average of 0.742 and
a standard deviation of 0.178. Therefore, the
model accounts for most of the factors affecting
the algorithm performance.
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Homogeneous subsets
MS levels 1 2 3

0.010 1355.1541
0.025 1368.2300
0.050 1407.1335
0.075 1485.6030
0.100 1604.6726
Sig. 0.0512 1 1

TABLE III
PBIL. HOMOGENEOUS SUBSETS FOR FACTORMS.

C. Post Hoc Tests

The results in an ANOVA table serve only
to indicate whether means differ significantly or
not. They do not indicate which means differ
from another. To elucidate this question we
applied two methods. First, assuming normal-
ity, homogeneity of variance, and independent
observations we applied the Tukey Honestly
Significant Difference test, [14]. Then, since the
Levene test, [9], does not guarantee that popula-
tion variances are homogeneous, we applied the
Games-Howell test, [13]. Results were basically
the same. Finally, the results from Tukey’s test
were grouped in homogeneous subsets such that
each subset grouped levels with mean run-length
which do not differ significantly. In general, a
large number of homogeneous subsets grouping
each of them just one level or a few different
levels, means that the algorithm performance
is largely influenced by the factor values. Ho-
mogeneous subsets are sorted according to in-
creasing values of the mean run-length. Thus,
the first subset includes the mean run-lengths
corresponding to those level factors for which
the algorithm shows the best performance.

To illustrate this concept, Table III displays
the homogeneous subsets generated for PBIL
algorithm and one problem instance considering
the mutation shift factor. In what follows, we
use the homogeneous subsets to summarize the
results obtained for each parameter considering
all the problems in the benchmark.

Population size:The number of homogeneous
subsets varies with the specific problem instance
considered. 75% of the problems generated 6 or

7 subsets (7 was the largest possible number).
In the 80% of the problems the first subset
included just 1 or 2 levels. Therefore changing
the value of the population size has an important
effect on the algorithm performance. Concerning
the levels included in the first subset, the best
performance is achieved for populations in the
range [20, 30].

Learning rate: The situation here is similar
to that described for the population size. Now
the maximum number of different subsets was
5 and the actual number was always either 4 or
5. In general, the first subset includes just one
level. Therefore PBIL peformance is sensitive
to level changes inLR. PBIL showed the best
performace forLR levels in the first subset in
the range [0.20, 0.25].

Mutation probability: The number of homo-
geneous subsets was 3 or more for the 70% of
the problems studied while the number of levels
included in the first subset strongly depended on
the specific problem, sometimes it was just 1 and
sometimes the subset included almost all of the
levels. In 90% of the cases, levelMP = 0.01
in the first subset lead to the best performance.
Good performances were also obtained forMP

values in the range [0.025, 0.050].
Mutation shift: This factor along with mu-

tation probability appear only in the algorithm
mutation step. Thus results are similar. The first
subset included several levels, which did not lead
to a notorious change in performance. The best
performance was reached forMS = 0.01 and
for levels in the range [0.025, 0.050].

D. Best Parameter Level Selection

Both one-way and multiple factor ANOVA
analysis have shown that different levels of pa-
rameters have an effect on the PBIL algorithm
peformance. Post hoc tests have delimited ranges
for the levels where the PBIL algorithm shows
the best performance. The next step is to select
a set of specific factors levels which lead to
the best PBIL performance. To identify them we
decided to conduct an analysis of the mean run-
length average values.
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Measure N LR MP MS

Average 28 0.171 0.067 0.040
Standard Deviation 22.93 0.070 0.032 0.026

TABLE IV
BEST FACTOR VALUES FROMANOVA ANALYSIS .

We applied a Best Treatment analysis. For
each problem in the benchmark and for each
treatment we computed the average of the mean
run-length. Then the best treatment was com-
puted as the average of these values over the
set of problems. Results are shown in Table IV.
The selected level values are of the same order
and close to those suggested in the literature for
genetic algorithms optimization, [1], [12].

VI. CONCLUSIONS ANDFUTURE WORK

To solve the Root Identification Problem in
Geometric Constraint Solving by means of ge-
netic algorithms, specifically PBIL and CHC
algorithms, is both feasible and effective.

As expected, the statistical study carried out
shows that the influence of the values assigned to
the parameters that characterizes the behaviour
of the PBIL algorithm is significative. In general,
the influence of parameters considered individu-
ally is greater than when considering combina-
tions of them.R2 values show that the model
accounts for most of the factors affecting the
algorithm performance.

We have identified sets of factors levels for
which PBIL shows an optimal performance for
the benchmark studied.

Future works will focus on studying the be-
haviour of the CHC algorithm and comparing
the results with the obtained by applying PBIL.

Furthermore, assuming that the run length is
a random variable, currently we are conducting
experiments to figure out the intrinsic run length
distributions for PBIL. This would lead to deter-
mine an optimal value for the maximum number
of iterations allowed given a specific solution
quality required.
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