27 research outputs found

    Nonlinear Optical Spectroscopy of Solid/Solid Interfaces

    Get PDF
    Three-wave mixing (3WM) spectroscopy is an exciting and relatively unexplored probe of buried solid interfaces. It possesses long penetration depths characteristic of most optical methods and intrinsic interface specificity characteristic of second-order optical processes. In this thesis we present frequency domain measurements of the ZnSe/GaAs(OOl) heterojunction by second-harmonic (SH) and sum-frequency (SF) generation. Our experiments reveal an unusual three-wave mixing resonance that arises as a result of virtual transitions between an interfacial quantum well state and the ZnSe valence band. The interfacial quantum well was brought about by interdiffusion of Zn (Ga) into GaAs (ZnSe) during sample growth. The observation introduces a new class of nonlinear optical phenomena at interfaces that can provide useful information about band profiles, diffusion and defects along the boundary of two semiconductors. We have found that this interfacial SH resonance is sensitive to a variety of structural phenomena. In essence any process that modifies the band profile near the junction will affect the strength of the resonance. We have observed the variation of interface SH spectra with respect to lattice strain relaxation and to surface reconstruction of the buried GaAs. In addition, using a newly developed photomodulationSHG (PSHG) technique, we have exploited this sensitivity to determine the nature and relative density of interface charge traps as a function of substrate surface reconstruction. The PSHG method was also used to study free charge trapping mechanisms at ZnSe/GaAs(OOl) heterointerfaces. Our measurements determined that the interfacial trap-centers are mainly hole-traps with lifetime of 35 sec. In the course of carrying out these experiments we also observed interference in reflected second harmonic generation from two adjoined nonlinear slabs. A theory for the phenomena was presented and was used to understand our experimental results with ZnSe/GaAs(OOl) heterostructures. This interference phenomena was introduced as a new methodology to measure the second-order susceptibility of thin overlayer materials

    Phase field simulation of liquid filling on grooved surfaces for complete, partial, and pseudo-partial wetting cases

    Get PDF
    We develop and harness a phase field simulation method to study liquid filling on grooved surfaces. We consider both short-range and long-range liquid–solid interactions, with the latter including purely attractive and repulsive interactions as well as those with short-range attraction and long-range repulsion. This allows us to capture complete, partial, and pseudo-partial wetting states, demonstrating complex disjoining pressure profiles over the full range of possible contact angles as previously proposed in the literature. Applying the simulation method to study liquid filling on grooved surfaces, we compare the filling transition for the three different classes of wetting states as we vary the pressure difference between the liquid and gas phases. The filling and emptying transitions are reversible for the complete wetting case, while significant hysteresis is observed for the partial and pseudo-partial cases. In agreement with previous studies, we also show that the critical pressure for the filling transition follows the Kelvin equation for the complete and partial wetting scenarios. Finally, we find the filling transition can display a number of distinct morphological pathways for the pseudo-partial wetting cases, as we demonstrate here for varying groove dimensions

    Predicting Hemiwicking Dynamics on Textured Substrates

    Get PDF
    The ability to predict liquid transport rates on textured surfaces is key to the design and optimization of devices and processes such as oil recovery, coatings, reaction-separation, high-throughput screening, and thermal management. In this work we develop a fully analytical model to predict the propagation coefficients for liquids hemiwicking through micropillar arrays. This is carried out by balancing the capillary driving force and a viscous resistive force and solving the Navier–Stokes equation for representative channels. The model is validated against a large data set of experimental hemiwicking coefficients harvested from the literature and measured in-house using high-speed imaging. The theoretical predictions show excellent agreement with the measured values and improved accuracy compared to previously proposed models. Furthermore, using lattice Boltzmann (LB) simulations, we demonstrate that the present model is applicable over a broad range of geometries. The scaling of velocity with texture geometry, implicit in our model, is compared against experimental data, where good agreement is observed for most practical systems. The analytical expression presented here offers a tool for developing design guidelines for surface chemistry and microstructure selection for liquid propagation on textured surfaces

    Interfacial Structure and Melting Temperature of Alkane and Alcohol Molecules in Contact with Polystyrene Films

    No full text
    Infrared-visible sum-frequency-generation spectroscopy (SFG) is used to investigate the interfacial structure of hexadecanol (C16H33OH) and heneicosane (C21H44) in contact with polystyrene films (PS) spin coated on a sapphire substrate. The interfacial structure of hexadecanol is very different from heneicosane in contact with PS. In the crystalline state, the hexadecanol molecules are oriented with the C-C-C axis parallel to the surface plane in contact with PS. For the crystalline heneicosane/PS interface, the SFG spectra are very similar to those observed for molecules oriented with the symmetry axis of the methyl groups parallel to the surface normal. The structure of both hexadecanol (or heneicosane) and the phenyl groups changes sharply at the melting temperature of hexadecanol (or heneicosane). Upon heating the hexadecanol/PS sample above the glass transition temperature (T(g)) of PS, the hexadecanol molecules penetrate through the PS film and adsorb on the sapphire substrate. The adsorbed hexadecanol molecules are oriented with the symmetry axis of the methyl groups parallel to the surface normal. The structure of the PS molecules at the sapphire interface is different because the PS phenyl groups are now in contact with the hydrophobic tails of the hexadecanol molecules, rather than the hydrophilic sapphire substrate. The adsorbed hexadecanol molecules do not disorder at the bulk melting temperature of hexadecanol. In comparison, no adsorption of heneicosane molecules next to sapphire interface upon annealing was observed. The differences between the adsorption of hexadecanol and heneicosane can be explained by the preferential interactions between the hydroxyl groups of the alcohol and hydrophilic sapphire substrate

    Interference Effect from Buried Interfaces Investigated by Angular-Dependent Infrared Sum Frequency Generation Technique

    No full text
    Infrared-visible sum frequency generation spectroscopy (SFG) in conjunction with total internal reflection geometry (TIR) has been demonstrated as a powerful technique to study buried polymer interfaces. We have developed a theoretical model using linear and nonlinear boundary conditions to calculate the SFG signals as a function of incident angles and thickness of the polymer films. The validity of this model is tested using a polystyrene film (PS) coated on a sapphire prism. This PS film is exposed to heneicosane (C21H44) above and below its melting temperature. At temperatures greater than Tm, the SFG contributions from both interfaces (PS/sapphire and alkane/PS) are comparable and we observe strong interference effects. At temperatures below Tm, the SFG signals are dominated by the methyl signals of all-trans heneicosane molecules at the alkane/PS interface. The theoretical model is able to accurately capture the angle and thickness dependence of the SFG signal and provides a valuable tool to accurately determine the interference effects in multilayer samples using SFG in total internal reflection geometry. The model also provides physical parameters (i.e., film thickness, incident angle and substrate index of refraction) needed to suppress or enhance SFG signals generated at a particular interface

    Molecular Origin of Solvent Resistance of Polyacrylonitrile

    No full text
    We report on the first in-situ sum frequency generation (SFG) spectroscopy characterization of polyacrylonitrile (PAN) interfacial interactions with air, sapphire, water, and heptane. Using the shift in the resonance frequency of CN at various interfaces, we demonstrated that PAN interacts with the surface hydroxyl of sapphire substrate through the lone pair orbital of nitrogen in the “end-on” configuration (σ-H bond). We also demonstrated that the CN−CN interaction is the main reason for the superior chemical resistance property of PAN. At room temperature the interaction between the polymer chains is much stronger than the interaction between the polymer and solvent molecules including water and heptane. At high temperatures, however, the interaction between the nitrile groups of the polymer weakens, making interaction possible between the nitrile groups and the surface hydroxyls of the substrate and water. These results provide an important insight as to why acrylonitrile when copolymerized with butadiene to form nitrile rubber results in one of the best known synthetic oil-resistant rubber

    Experimental Correlation Between Interfacial Water Structure and Mineral Reactivity

    No full text
    We present an experimental demonstration of the effect of solvent structure on the interfacial reactivity of the silica/water interface using in situ vibrational Sum-frequency Generation (vSFG) spectroscopy. The response of the molecular arrangement of the interfacial solvent to the presence of cations is pH dependent with the highest sensitivity at neutral pH, relevant to geochemical and biological environments. The pH-dependent changes in vSFG spectra are in excellent correlation with the enhancement of quartz dissolution in salt water, which was hypothesized by Dove et al. to be due to changes of the interfacial solvent structure at the silica surface. vSFG provides mechanistic insights into silica dissolution and sheds light on the role of ions in altering interfacial solvent ordering, which has implications in fields ranging from protein–water interactions to oil recovery
    corecore