130 research outputs found

    The Impact of Foreign Direct Investment on Income Convergence in China - A Spatial Panel Data Analysis

    Get PDF
    After taking into account the spatial dependence effects in the panel data consisting of all 31 provinces, direct-controlled municipalities, and autonomous regions in China between the years 1998 and 2017, it found significant spatial autocorrelation effects in both traditional absolute and conditional β income convergence models. At the national level, using the spatial econometric models (Spatial Error Model for absolute convergence and Spatial Durbin Model for conditional convergence), the analysis shows that in the past 19 years from 1999 to 2017, there is no absolute β income convergence. However, there is conditional β income convergence after controlling for all growth factors, while the positive effect of fixed asset investment on regional economic growth is significant, and the effect of population growth is significantly negative. The other growth factors such as FDI inflow, export, and higher education enrollment were surprisingly found no statistically significant effects on regional economic growth. From regional level (Spatial Durbin Model and Spatial Lag Model), there is no conditional β income convergence within each four economic regions. Nonetheless, the northeast region showed an income divergence trend, where only the fixed asset investment is positively significant. This study results imply that China should continue to improve fixed asset investment and control population growth to stimulate regional economic growth and income convergence

    A Narrative Review of Norovirus Gastroenteritis: More Global Attention Is Needed

    Get PDF
    Noroviruses (NoVs), an important pathogenic agent of foodborne illness, lead to acute and chronic gastroenteritis in humans of all ages and to travelers’ diarrhea. Many genotypes exist in nature; GII.4 is widely known as the most predominant. Outbreaks mostly occur in semi-closed settings. Although the disease is self-limited to person, many cases have resulted in death, which has raised more concerns. However, a lack of microbial culture techniques limits research and thus knowledge about these viruses. To date, there are no specific antiviral drugs that fight NoVs. Rehydration is the ideal approach at present for severe cases. The only way to prevent infection is to improve personal hygiene. So many variants and ambiguous evolution mechanisms make research for a vaccine much more difficult. In recent years, several vaccine candidates entered pre-clinical development. This review concentrates on summarizing the aspects of NoV structure, culture, genetic evolution, and the vaccine

    Effects of extreme rainfall events on phytoplankton community in a subtropical eutrophic lake: a mesocosm experiment

    Get PDF
    The impact of global climate change has led to an increase in extreme rainfall events, causing fluctuations in terrigenic inputs that significantly affect aquatic communities. Lake Changhu, the third-largest freshwater lake in Hubei Province, plays a crucial role as a reservoir of aquatic germplasm resources in the middle reaches of the Yangtze River. In recent years, the lake has experienced a series of extreme rainfall events. In response to recent extreme rainfall events, a 42-day mesocosm experiment was conducted to understand the effect of terrigenic inputs on various aspects of phytoplankton in Lake Changhu, such as species composition, abundance, biomass, diversity, community turnover rates, resource use efficiency, and stability. The experiment involved the application of different terrigenic treatments, including a control group (CK, using lake water), low terrigenic input (LT), medium terrigenic input (MT), and high terrigenic input (HT). The results showed a noticeable shift in phytoplankton composition from a co-dominated state of Chlorophyta and Cyanobacteria in the CK treatment to a Cyanobacteria-dominated state in the other terrigenic treatments. Furthermore, the terrigenic inputs increased phytoplankton abundance, community turnover rates, diversity, and resistance. Comparatively, the diversity index of phytoplankton increased by 82.61%, 73.83%, and 70.41% in the LT, MT, and HT treatments, respectively, in contrast to the CK treatment. However, phytoplankton abundance decreased by 6.99%, 15.55%, and 14.76% in the LT, MT, and HT treatments. Additionally, the resource use efficiency decreased by 1.94%, 5.16%, and 14.19% in the LT, MT, and HT treatments, respectively, compared to the CK treatment. These findings provide valuable insights into monitoring and managing the water ecology in Lake Changhu, offering a scientific basis for implementing effective management strategies

    RpiR Homologues May Link \u3ci\u3eStaphylococcus aureus\u3c/i\u3e RNAIII Synthesis and Pentose Phosphate Pathway Regulation

    Get PDF
    Staphylococcus aureus is a medically important pathogen that synthesizes a wide range of virulence determinants. The synthesis of many staphylococcal virulence determinants is regulated in part by stress-induced changes in the activity of the tricarboxylic acid (TCA) cycle. One metabolic change associated with TCA cycle stress is an increased concentration of ribose, leading us to hypothesize that a pentose phosphate pathway (PPP)-responsive regulator mediates some of the TCA cycle-dependent regulatory effects. Using bioinformatics, we identified three potential ribose-responsive regulators that belong to the RpiR family of transcriptional regulators. To determine whether these RpiR homologues affect PPP activity and virulence determinant synthesis, the rpiR homologues were inactivated, and the effects on PPP activity and virulence factor synthesis were assessed. Two of the three homologues (RpiRB and RpiRC) positively influence the transcription of the PPP genes rpiA and zwf, while the third homologue (RpiRA) is slightly antagonistic to the other homologues. In addition, inactivation of RpiRC altered the temporal transcription of RNAIII, the effector molecule of the agr quorum-sensing system. These data confirm the close linkage of central metabolism and virulence determinant synthesis, and they establish a metabolic override for quorum-sensing-dependent regulation of RNAIII transcription

    Tricarboxylic Acid Cycle-Dependent Regulation of \u3ci\u3eStaphylococcus epidermidis\u3c/i\u3e Polysaccharide Intercellular Adhesin Synthesis

    Get PDF
    Staphylococcus epidermidis is a major nosocomial pathogen primarily infecting immunocompromised individuals or those with implanted biomaterials (e.g., catheters). Biomaterial-associated infections often involve the formation of a biofilm on the surface of the medical device. In S. epidermidis, polysaccharide intercellular adhesin (PIA) is an important mediator of biofilm formation and pathogenesis. Synthesis of PIA is regulated by at least three DNA binding proteins (IcaR, SarA, and σB) and several environmental and nutritional conditions. Previously, we observed the environmental conditions that increased PIA synthesis decreased tricarboxylic acid (TCA) cycle activity. In this study, S. epidermidis TCA cycle mutants were constructed, and the function of central metabolism in PIA biosynthesis was examined. TCA cycle inactivation altered the metabolic status of S. epidermidis, resulting in a massive derepression of PIA biosynthetic genes and a redirection of carbon from growth into PIA biosynthesis. These data demonstrate that the bacterial metabolic status is a critical regulatory determinant of PIA synthesis. In addition, these data lead us to propose that the TCA cycle acts as a signal transduction pathway to translate external environmental cues into intracellular metabolic signals that modulate the activity of transcriptional regulators

    Sciences for The 2.5-meter Wide Field Survey Telescope (WFST)

    Full text link
    The Wide Field Survey Telescope (WFST) is a dedicated photometric survey facility under construction jointly by the University of Science and Technology of China and Purple Mountain Observatory. It is equipped with a primary mirror of 2.5m in diameter, an active optical system, and a mosaic CCD camera of 0.73 Gpix on the main focus plane to achieve high-quality imaging over a field of view of 6.5 square degrees. The installation of WFST in the Lenghu observing site is planned to happen in the summer of 2023, and the operation is scheduled to commence within three months afterward. WFST will scan the northern sky in four optical bands (u, g, r, and i) at cadences from hourly/daily to semi-weekly in the deep high-cadence survey (DHS) and the wide field survey (WFS) programs, respectively. WFS reaches a depth of 22.27, 23.32, 22.84, and 22.31 in AB magnitudes in a nominal 30-second exposure in the four bands during a photometric night, respectively, enabling us to search tremendous amount of transients in the low-z universe and systematically investigate the variability of Galactic and extragalactic objects. Intranight 90s exposures as deep as 23 and 24 mag in u and g bands via DHS provide a unique opportunity to facilitate explorations of energetic transients in demand for high sensitivity, including the electromagnetic counterparts of gravitational-wave events detected by the second/third-generation GW detectors, supernovae within a few hours of their explosions, tidal disruption events and luminous fast optical transients even beyond a redshift of 1. Meanwhile, the final 6-year co-added images, anticipated to reach g about 25.5 mag in WFS or even deeper by 1.5 mag in DHS, will be of significant value to general Galactic and extragalactic sciences. The highly uniform legacy surveys of WFST will also serve as an indispensable complement to those of LSST which monitors the southern sky.Comment: 46 pages, submitted to SCMP

    \u3ci\u3eStaphylococcus aureus\u3c/i\u3e Virulence Factors Synthesis is Controlled by Central Metabolism

    Get PDF
    Staphylococcus aureus is a versatile pathogen that can survive in diverse host environments. This versatility depends on its ability to sense nutrients and respond by modulating gene expression, including the synthesis of virulence determinants. In addition to its ability to synthesize virulence factors, the capacity of S. aureus to form biofilms is an important mediator of virulence in certain infections. Biofilms are a complex aggregation of bacteria commonly encapsulated by an adhesive exopolysaccharide matrix (polysaccharide intercellular adhesin; PIA). To study S. aureus biofilm formation, we assessed the metabolic requirements of S. aureus growing in a biofilm and found the bacteria extracted glucose and accumulated lactate, acetate, formate, and acetoin. Additionally, S. aureus selectively extracted six amino acids from the culture medium (serine, proline, arginine, glutamine, glycine, and threonine). The major staphylococcal exopolysaccharide, PIA, is synthesized when the tricarboxylic acid (TCA) cycle is repressed. To better understand TCA cycle-dependent regulation of PIA and virulence factor synthesis in S. aureus, we artificially induced the TCA cycle by limiting its ability to exogenously acquire a TCA cycle-derived amino acid (i.e., glutamine) by inactivating the glutamine permease gene (glnP) and assessed the effects on biofilm formation and virulence factor synthesis. We found that inactivation of this major glutamine transporter increased TCA cycle activity, transiently decreased PIA synthesis, and significantly reduced in vivo virulence in a rabbit endocarditis model, establishing a causal relationship between TCA cycle activity and virulence factor synthesis. This causal relationship between the TCA cycle and virulence factor synthesis suggests there are regulatory proteins connecting metabolism and the regulation of virulence factor synthesis. This regulation is likely to occur when a metabolite-responsive regulator responds to changes in TCA cycle associated biosynthetic intermediates, the redox status, and/or ATP. In related work, NMR metabolomic analysis of S. epidermidis indicated that TCA cycle stress altered the intracellular concentration of ribose. Using this information, three putative ribose-responsive RpiR-family regulators (orfs SAV0317, SAV0193 and SAV2315) were identified in S. aureus strain UAMS-1. The proteins encoded by sav0317 and sav0193 regulate hexose monophosphate shunt transcription and alter virulence factor synthesis by increasing the transcription or stability of RNAIII. These data confirm a close linkage of central metabolism and virulence factor synthesis in S. aureus and establish that this metabolic linkage can be manipulated to alter infectious outcomes

    Staphylococcus aureus virulence factors synthesis is controlled by central metabolism

    No full text
    Staphylococcus aureus is a versatile pathogen that can survive in diverse host environments. This versatility depends on its ability to sense nutrients and respond by modulating gene expression, including the synthesis of virulence determinants. In addition to its ability to synthesize virulence factors, the capacity of S. aureus to form biofilms is an important mediator of virulence in certain infections. Biofilms are a complex aggregation of bacteria commonly encapsulated by an adhesive exopolysaccharide matrix (polysaccharide intercellular adhesin; PIA). To study S. aureus biofilm formation, we assessed the metabolic requirements of S. aureus growing in a biofilm and found the bacteria extracted glucose and accumulated lactate, acetate, formate, and acetoin. Additionally, S. aureus selectively extracted six amino acids from the culture medium (serine, proline, arginine, glutamine, glycine, and threonine). The major staphylococcal exopolysaccharide, PIA, is synthesized when the tricarboxylic acid (TCA) cycle is repressed. To better understand TCA cycle-dependent regulation of PIA and virulence factor synthesis in S. aureus, we artificially induced the TCA cycle by limiting its ability to exogenously acquire a TCA cycle-derived amino acid ( i.e., glutamine) by inactivating the glutamine permease gene ( glnP) and assessed the effects on biofilm formation and virulence factor synthesis. We found that inactivation of this major glutamine transporter increased TCA cycle activity, transiently decreased PIA synthesis, and significantly reduced in vivo virulence in a rabbit endocarditis model, establishing a causal relationship between TCA cycle activity and virulence factor synthesis. This causal relationship between the TCA cycle and virulence factor synthesis suggests there are regulatory proteins connecting metabolism and the regulation of virulence factor synthesis. This regulation is likely to occur when a metabolite-responsive regulator responds to changes in TCA cycle associated biosynthetic intermediates, the redox status, and/or ATP. In related work, NMR metabolomic analysis of S. epidermidis indicated that TCA cycle stress altered the intracellular concentration of ribose. Using this information, three putative ribose-responsive RpiR-family regulators (orfs SAV0317, SAV0193 and SAV2315) were identified in S. aureus strain UAMS-1. The proteins encoded by sav0317 and sav0193 regulate hexose monophosphate shunt transcription and alter virulence factor synthesis by increasing the transcription or stability of RNAIII. These data confirm a close linkage of central metabolism and virulence factor synthesis in S. aureus and establish that this metabolic linkage can be manipulated to alter infectious outcomes

    Exosomes: Toward a potential application in bladder cancer diagnosis and treatment

    No full text
    Abstract Bladder cancer (BC) is a prevalent malignant tumor of the urinary system, known for its rapid progression and high likelihood of recurrence. Despite ongoing efforts, clinical diagnosis and treatment of BC remain limited. As such, there is an urgent need to investigate potential mechanisms underlying this disease. Exosomes, which contain a variety of bioactive molecules such as nucleic acids, proteins, and lipids, are regarded as extracellular messengers because they are implicated in facilitating intercellular communication in various diseases and are pivotal in tumor advancement, serving as a promising avenue for such researches. Nevertheless, the heterogeneous nature of BC necessitates further exploration of the potential involvement of exosomes in disease progression. This review comprehensively outlines the biological attributes of exosomes and their critical roles in tumorigenesis, while also discussing their potential applications in regulating the progression of BC involving clinical diagnosis, prognostication and treatment
    corecore