30 research outputs found

    C-Kit and stem cell factor regulate PANC-1 cell differentiation into insulin-and glucagon-producing cells

    Get PDF
    Recent evidence has shown that stem cell factor (SCF) and its receptor, c-Kit, have an important role in pancreatic islet development by promoting islet cell differentiation and proliferation. In this study, we examined the role of c-Kit and SCF in the differentiation and proliferation of insulin- and glucagon-producing cells using a human pancreatic duct cell line (PANC-1). Our study showed that increased expression of endocrine cell markers (such as insulin and glucagon) and transcription factors (such as PDX-1 and PAX-6) coincided with a decrease in CK19 and c-Kit cells (P0.001) during PANC-1 cell differentiation, determined by immunofluorescence and qRT-PCR. Cells cultured with exogenous SCF showed an increase in insulin (26%) and glucagon (35%) cell differentiation (P0.01), an increase in cell proliferation (P0.05) and a decrease in cell apoptosis (P0.01). siRNA knockdown of c-Kit resulted in a decrease in endocrine cell differentiation with a reduction in PDX-1 and insulin mRNA, as well as the number of cells immunostaining for PDX-1 and insulin. Taken together, these results show that c-Kit/SCF interactions are involved in mediating islet-like cluster formation and islet-like cell differentiation in a human pancreatic duct cell line. © 2010 USCAP, Inc All rights reserved

    Long-term c-Kit overexpression in beta cells compromises their function in ageing mice

    Get PDF
    Aims/hypothesis: c-Kit signalling regulates intracellular pathways that enhance beta cell proliferation, insulin secretion and islet vascularisation in mice up to 28 weeks of age and on short-term high-fat diet. However, long-term c-Kit activation in ageing mouse islets has yet to be examined. This study utilises beta cell-specific c-Kit-overexpressing transgenic (c-KitβTg) ageing mice (~60 weeks) to determine the effect of its activation on beta cell dysfunction and insulin secretion. Methods: Wild-type and c-KitβTg mice, aged 60 weeks, were examined using metabolic tests to determine glucose tolerance and insulin secretion. Pancreas histology and proteins in isolated islets were examined to determine the expression of beta cell transcription factors, proliferation and intracellular signalling. To determine the role of insulin receptor signalling in ageing c-KitβTg mice, we generated beta cell-specific inducible insulin receptor knockout in ageing c-KitβTg mice (c-KitβTg;βIRKO mice) and examined the ageing mice for glucose tolerance and islet histology. Results: Ageing c-KitβTg mice progressively developed glucose intolerance, compared with age-matched wild-type littermates, due to impaired insulin secretion. Increased beta cell mass, proliferation and nuclear forkhead box transcription factor O1 (FOXO1) expression and reduced exocytotic protein levels were detected in ageing c-KitβTg mouse islets. Protein analyses of isolated islets showed increased insulin receptor, phosphorylated IRS-1Ser612 and cleaved poly(ADP-ribose) polymerase levels in ageing c-KitβTg mice. Ageing c-KitβTg mouse islets treated ex vivo with insulin demonstrated reduced Akt phosphorylation, indicating that prolonged c-Kit induced beta cell insulin insensitivity. Ageing c-KitβTg;βIRKO mice displayed improved glucose tolerance and beta cell function compared with ageing c-KitβTg mice. Conclusions/interpretation: These findings indicate that long-term c-Kit overexpression in beta cells has a negative impact on insulin exocytosis and that temporally dependent regulation of c-Kit–insulin receptor signalling is important for optimal beta cell function

    Peroxisome proliferator-activated receptor -β/δ, -γ Agonists and resveratrol modulate hypoxia induced changes in nuclear receptor activators of muscle oxidative metabolism

    Get PDF
    PPAR-α, PPAR-β, and PPAR-γ, and RXR in conjunction with PGC-1α and SIRT1, activate oxidative metabolism genes determining insulin sensitivity. In utero, hypoxia is commonly observed in Intrauterine Growth Restriction (IUGR), and reduced insulin sensitivity is often observed in these infants as adults. We sought to investigate how changes in oxygen tension might directly impact muscle PPAR regulation of oxidative genes. Following eight days in culture at 1 oxygen, C2C12 muscle myoblasts displayed a reduction of PGC-1α, PPAR-α, and RXR-α mRNA, as well as CPT-1b and UCP-2 mRNA. SIRT1 and PGC-1α protein was reduced, and PPAR-γ protein increased. The addition of a PPAR-β agonist (L165,041) for the final 24 hours of 1 treatment resulted in increased levels of UCP-2 mRNA and protein whereas Rosiglitazone induced SIRT1, PGC-1α, RXR-α, PPAR-γ, CPT-1b, and UCP-2 mRNA and SIRT1 protein. Under hypoxia, Resveratrol induced SIRT1, RXR-, PPAR- mRNA, and PPAR- and UCP-2 protein. These findings demonstrate that hypoxia alters the components of the PPAR pathway involved in muscle fatty acid oxidative gene transcription and translation. These results have implications for understanding selective hypoxia adaptation and how it might impact long-term muscle oxidative metabolism and insulin sensitivity. Copyright © 2010 Timothy R. H. Regnault et al

    Dephosphorylation of juxtamembrane serines and threonines of the NPR2 guanylyl cyclase is required for rapid resumption of oocyte meiosis in response to luteinizing hormone

    Get PDF
    AbstractThe meiotic cell cycle of mammalian oocytes starts during embryogenesis and then pauses until luteinizing hormone (LH) acts on the granulosa cells of the follicle surrounding the oocyte to restart the cell cycle. An essential event in this process is a decrease in cyclic GMP in the granulosa cells, and part of the cGMP decrease results from dephosphorylation and inactivation of the natriuretic peptide receptor 2 (NPR2) guanylyl cyclase, also known as guanylyl cyclase B. However, it is unknown whether NPR2 dephosphorylation is essential for LH-induced meiotic resumption. Here, we prevented NPR2 dephosphorylation by generating a mouse line in which the seven regulatory serines and threonines of NPR2 were changed to the phosphomimetic amino acid glutamate (Npr2–7E). Npr2–7E/7E follicles failed to show a decrease in enzyme activity in response to LH, and the cGMP decrease was attenuated; correspondingly, LH-induced meiotic resumption was delayed. Meiotic resumption in response to EGF receptor activation was likewise delayed, indicating that NPR2 dephosphorylation is a component of the pathway by which EGF receptor activation mediates LH signaling. We also found that most of the NPR2 protein in the follicle was present in the mural granulosa cells. These findings indicate that NPR2 dephosphorylation in the mural granulosa cells is essential for the normal progression of meiosis in response to LH and EGF receptor activation. In addition, these studies provide the first demonstration that a change in phosphorylation of a transmembrane guanylyl cyclase regulates a physiological process, a mechanism that may also control other developmental events

    Characterization of Fam20C expression in odontogenesis and osteogenesis using transgenic mice

    Get PDF
    Our previous studies have demonstrated that Fam20C promotes differentiation and mineralization of odontoblasts, ameloblasts, osteoblasts and osteocytes during tooth and bone development. Ablation of the Fam20C gene inhibits bone and tooth growth by increasing fibroblast growth factor 23 in serum and causing hypophosphatemia in conditional knockout mice. However, control and regulation of the expression of Fam20C are still unknown. In this study, we generated a transgenic reporter model which expresses green fluorescence protein (GFP) driven by the Fam20C promoter. Recombineering was used to insert a 16 kb fragment of the mouse Fam20C gene (containing the 15 kb promoter and 1.1 kb of exon 1) into a pBluescript SK vector with the topaz variant of GFP and a bovine growth hormone polyadenylation sequence. GFP expression was subsequently evaluated by histomorphometry on cryosections from E14 to adult mice. Fluorescence was evident in the bone and teeth as early as E17.5. The GFP signal was maintained stably in odontoblasts and osteoblasts until 4 weeks after birth. The expression of GFP was significantly reduced in teeth, alveolar bone and muscle by 8 weeks of age. We also observed colocalization of the GFP signal with the Fam20C antibody in postnatal 1- and 7-day-old animals. Successful generation of Fam20C-GFP transgenic mice will provide a unique model for studying Fam20C gene expression and the biological function of this gene during odontogenesis and osteogenesis

    Dysregulation of locus coeruleus development in congenital central hypoventilation syndrome.

    Get PDF
    Human congenital central hypoventilation syndrome (CCHS), resulting from mutations in transcription factor PHOX2B, manifests with impaired responses to hypoxemia and hypercapnia especially during sleep. To identify brainstem structures developmentally affected in CCHS, we analyzed two postmortem neonatal-lethal cases with confirmed polyalanine repeat expansion (PARM) or Non-PARM (PHOX2B∆8) mutation of PHOX2B. Both human cases showed neuronal losses within the locus coeruleus (LC), which is important for central noradrenergic signaling. Using a conditionally active transgenic mouse model of the PHOX2B∆8 mutation, we found that early embryonic expression (<E10.5) caused failure of LC neuronal specification and perinatal respiratory lethality. In contrast, later onset (E11.5) of PHOX2B∆8 expression was not deleterious to LC development and perinatal respiratory lethality was rescued, despite failure of chemosensor retrotrapezoid nucleus formation. Our findings indicate that early-onset mutant PHOX2B expression inhibits LC neuronal development in CCHS. They further suggest that such mutations result in dysregulation of central noradrenergic signaling, and therefore, potential for early pharmacologic intervention in humans with CCHS

    Microtubule-Dependent Subcellular Redistribution of the Transcriptional Coactivator p/CIP

    No full text
    The transcriptional coactivator p/CIP is a member of a family of nuclear receptor coactivator/steroid receptor coactivator (NCoA/SRC) proteins that mediate the transcriptional activities of nuclear hormone receptors. We have found that p/CIP is predominantly cytoplasmic in a large proportion of cells in various tissues of the developing mouse and in a number of established cell lines. In mouse embryonic fibroblasts, serum deprivation results in the redistribution of p/CIP to the cytoplasmic compartment and stimulation with growth factors or tumor-promoting phorbol esters promotes p/CIP shuttling into the nucleus. Cytoplasmic accumulation of p/CIP is also cell cycle dependent, occurring predominantly during the S and late M phases. Leptomycin B (LMB) treatment results in a marked nuclear accumulation, suggesting that p/CIP undergoes dynamic nuclear export as well as import. We have identified a strong nuclear import signal in the N terminus of p/CIP and two leucine-rich motifs in the C terminus that resemble CRM-1-dependent nuclear export sequences. When fused to green fluorescent protein, the nuclear export sequence region is cytoplasmic and is retained in the nucleus in an LMB-dependent manner. Disruption of the leucine-rich motifs prevents cytoplasmic accumulation. Furthermore, we demonstrate that cytoplasmic p/CIP associates with tubulin and that an intact microtubule network is required for intracellular shuttling of p/CIP. Immunoaffinity purification of p/CIP from nuclear and cytosolic extracts revealed that only nuclear p/CIP complexes possess histone acetyltransferase activity. Collectively, these results suggest that cellular compartmentalization of NCoA/SRC proteins could potentially regulate nuclear hormone receptor-mediated events as well as integrating signals in response to different environmental cues

    C-Kit and stem cell factor regulate PANC-1 cell differentiation into insulin-and glucagon-producing cells

    Get PDF
    Recent evidence has shown that stem cell factor (SCF) and its receptor, c-Kit, have an important role in pancreatic islet development by promoting islet cell differentiation and proliferation. In this study, we examined the role of c-Kit and SCF in the differentiation and proliferation of insulin- and glucagon-producing cells using a human pancreatic duct cell line (PANC-1). Our study showed that increased expression of endocrine cell markers (such as insulin and glucagon) and transcription factors (such as PDX-1 and PAX-6) coincided with a decrease in CK19 and c-Kit cells (P0.001) during PANC-1 cell differentiation, determined by immunofluorescence and qRT-PCR. Cells cultured with exogenous SCF showed an increase in insulin (26%) and glucagon (35%) cell differentiation (P0.01), an increase in cell proliferation (P0.05) and a decrease in cell apoptosis (P0.01). siRNA knockdown of c-Kit resulted in a decrease in endocrine cell differentiation with a reduction in PDX-1 and insulin mRNA, as well as the number of cells immunostaining for PDX-1 and insulin. Taken together, these results show that c-Kit/SCF interactions are involved in mediating islet-like cluster formation and islet-like cell differentiation in a human pancreatic duct cell line. © 2010 USCAP, Inc All rights reserved
    corecore