11 research outputs found

    Development of cognitive enhancers based on inhibition of insulin-regulated aminopeptidase

    Get PDF
    The peptides angiotensin IV and LVV-hemorphin 7 were found to enhance memory in a number of memory tasks and reverse the performance deficits in animals with experimentally induced memory loss. These peptides bound specifically to the enzyme insulin-regulated aminopeptidase (IRAP), which is proposed to be the site in the brain that mediates the memory effects of these peptides. However, the mechanism of action is still unknown but may involve inhibition of the aminopeptidase activity of IRAP, since both angiotensin IV and LVV-hemorphin 7 are competitive inhibitors of the enzyme. IRAP also has another functional domain that is thought to regulate the trafficking of the insulin-responsive glucose transporter GLUT4, thereby influencing glucose uptake into cells. Although the exact mechanism by which the peptides enhance memory is yet to be elucidated, IRAP still represents a promising target for the development of a new class of cognitive enhancing agents

    A lipid-anchored neurokinin 1 receptor antagonist prolongs pain relief by a three-pronged mechanism of action targeting the receptor at the plasma membrane and in endosomes

    Get PDF
    G-protein-coupled receptors (GPCRs) are traditionally known for signaling at the plasma membrane, but they can also signal from endosomes after internalization to control important pathophysiological processes. In spinal neurons, sustained endosomal signaling of the neurokinin 1 receptor (NK1R) mediates nociception, as demonstrated in models of acute and neuropathic pain. An NK1R antagonist, Spantide I (Span), conjugated to cholestanol (Span-Chol), accumulates in endosomes, inhibits endosomal NK1R signaling, and causes prolonged antinociception. However, the extent to which the Chol-anchor influences long-term location and activity is poorly understood. Herein, we used fluorescent correlation spectroscopy and targeted biosensors to characterize Span-Chol over time. The Chol-anchor increased local concentration of probe at the plasma membrane. Over time we observed an increase in NK1R-binding affinity and more potent inhibition of NK1R-mediated calcium signaling. Span-Chol, but not Span, caused a persistent decrease in NK1R recruitment of βarrestin and receptor internalization to early endosomes. Using targeted biosensors, we mapped the relative inhibition of NK1R signaling as the receptor moved into the cell. Span selectively inhibited cell surface signaling, whereas Span-Chol partitioned into endosomal membranes and blocked endosomal signaling. In a preclinical model of pain, Span-Chol caused prolonged antinociception (>9 h), which is attributable to a three-pronged mechanism of action: increased local concentration at membranes, a prolonged decrease in NK1R endocytosis, and persistent inhibition of signaling from endosomes. Identifying the mechanisms that contribute to the increased preclinical efficacy of lipid-anchored NK1R antagonists is an important step toward understanding how we can effectively target intracellular GPCRs in disease

    Allosteric modulation of M1 muscarinic acetylcholine receptor internalization and subcellular trafficking

    No full text
    Background: The effects of allosteric modulators on G protein-coupled receptor trafficking are largely unknown. Results: The allosteric ligand BQCA modulates M1 mAChR arrestin recruitment and receptor trafficking. Conclusion: M1 mAChR trafficking is arrestin- and G protein-dependent and modulated by BQCA. Significance: The impact of allosteric modulators on receptor trafficking needs to be assessed when considering this family of ligands as potential chronic therapies. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc. Published in the U.S.A

    Proposed Mode of Binding and Action of Positive Allosteric Modulators at Opioid Receptors

    No full text
    Available crystal structures of opioid receptors provide a high-resolution picture of ligand binding at the primary (“orthosteric”) site, that is, the site targeted by endogenous ligands. Recently, positive allosteric modulators of opioid receptors have also been discovered, but their modes of binding and action remain unknown. Here, we use a metadynamics-based strategy to efficiently sample the binding process of a recently discovered positive allosteric modulator of the δ-opioid receptor, BMS-986187, in the presence of the orthosteric agonist SNC-80, and with the receptor embedded in an explicit lipid–water environment. The dynamics of BMS-986187 were enhanced by biasing the potential acting on the ligand–receptor distance and ligand–receptor interaction contacts. Representative lowest-energy structures from the reconstructed free-energy landscape revealed two alternative ligand binding poses at an allosteric site delineated by transmembrane (TM) helices TM1, TM2, and TM7, with some participation of TM6. Mutations of amino acid residues at these proposed allosteric sites were found to either affect the binding of BMS-986187 or its ability to modulate the affinity and/or efficacy of SNC-80. Taken together, these combined experimental and computational studies provide the first atomic-level insight into the modulation of opioid receptor binding and signaling by allosteric modulators

    Protein kinase D and G?? subunits mediate agonist-evoked translocation of protease-activated receptor-2 from the golgi apparatus to the plasma membrane

    No full text
    Agonist-evoked endocytosis of G protein-coupled receptors has been extensively studied. The mechanisms by which agonists stimulate mobilization and plasma membrane translocation of G protein-coupled receptors from intracellular stores are unexplored. Protease-activated receptor-2 (PAR2 ) traffics to lysosomes, and sustained protease signaling requires mobilization and plasma membrane trafficking of PAR2 from Golgi stores. We evaluated the contribution of protein kinase D (PKD) and G?? to this process. In HEK293 and KNRK cells, the PAR2 agonists trypsin and 2-furoyl-LIGRLO-NH2 activated PKD in the Golgi apparatus, where PKD regulates protein trafficking. PAR2 activation induced translocation of G??, a PKD activator, to the Golgi apparatus, determined by bioluminescence resonance energy transfer between G?-Venus and giantin-Rluc8. Inhibitors of PKD (CRT0066101) and G?? (gallein) prevented PAR2 -stimulated activation of PKD. CRT0066101, PKD1 siRNA, and gallein all inhibited recovery of PAR2-evoked Ca2+ signaling. PAR2 with a photoconvertible Kaede tag was expressed in KNRK cells to examine receptor translocation from the Golgi apparatus to the plasma membrane. Irradiation of the Golgi region (405 nm) induced green-red photo-conversion of PAR2-Kaede. Trypsin depleted PAR2-Kaede from the Golgi apparatus and repleted PAR2-Kaede at the plasma membrane. CRT0066101 inhibited PAR2-Kaede translocation to the plasma membrane. CRT0066101 also inhibited sustained protease signaling to colonocytes and nociceptive neurons that naturally express PAR2 and mediate protease-evoked inflammation and nociception. Our results reveal a major role for PKD and G?? in agonist-evoked mobilization of intracellular PAR2 stores that is required for sustained signaling by extracellular proteases

    Identification and characterization of a new class of cognitive enhancers based on inhibition of insulin-regulated aminopeptidase

    Full text link
    Approximately one-quarter of people over the age of 65 are estimated to suffer some form of cognitive impairment, underscoring the need for effective cognitive-enhancing agents. Insulin-regulated aminopeptidase (IRAP) is potentially an innovative target for the development of cognitive enhancers, as its peptide inhibitors exhibit memory-enhancing effects in both normal and memory-impaired rodents. Using a homology model of the catalytic domain of IRAP and virtual screening, we have identified a class of nonpeptide, small-molecule inhibitors of IRAP. Structure-based computational development of an initial &quot;hit&quot; resulted in the identification of two divergent families of compounds. Subsequent medicinal chemistry performed on the highest affinity compound produced inhibitors with nanomolar affinities (Ki 20&ndash;700 nM) for IRAP. In vivo efficacy of one of these inhibitors was demonstrated in rats with an acute dose (1 nmol in 1 &micro;l) administered into the lateral ventricles, improving performance in both spatial working and recognition memory paradigms. We have identified a family of specific IRAP inhibitors that is biologically active which will be useful both in understanding the physiological role of IRAP and potentially in the development of clinically useful cognitive enhancers. Notably, this study also provides unequivocal proof of principal that inhibition of IRAP results in memory enhancement.<br /

    Protease-activated receptor-2 in endosomes signals persistent pain of irritable bowel syndrome

    No full text
    © 2018 National Academy of Sciences. All rights reserved. Once activated at the surface of cells, G protein-coupled receptors (GPCRs) redistribute to endosomes, where they can continue to signal. Whether GPCRs in endosomes generate signals that contribute to human disease is unknown. We evaluated endosomal signaling of protease-activated receptor-2 (PAR2), which has been proposed to mediate pain in patients with irritable bowel syndrome (IBS). Trypsin, elastase, and cathepsin S, which are activated in the colonic mucosa of patients with IBS and in experimental animals with colitis, caused persistent PAR2-dependent hyperexcitability of nociceptors, sensitization of colonic afferent neurons to mechanical stimuli, and somatic mechanical allodynia. Inhibitors of clathrin- and dynamin-dependent endocytosis and of mitogen-activated protein kinase kinase-1 prevented trypsin-induced hyperexcitability, sensitization, and allodynia. However, they did not affect elastase- or cathepsin S-induced hyperexcitability, sensitization, or allodynia. Trypsin stimulated endocytosis of PAR2, which signaled from endosomes to activate extracellular signal-regulated kinase. Elastase and cathepsin S did not stimulate endocytosis of PAR2, which signaled from the plasma membrane to activate adenylyl cyclase. Biopsies of colonic mucosa from IBS patients released proteases that induced persistent PAR2-dependent hyperexcitability of nociceptors, and PAR2 association with β-arrestins, which mediate endocytosis. Conjugation to cholestanol promoted delivery and retention of antagonists in endosomes containing PAR2. A cholestanol-conjugated PAR2 antagonist prevented persistent trypsin- and IBS protease-induced hyperexcitability of nociceptors. The results reveal that PAR2 signaling from endosomes underlies the persistent hyperexcitability of nociceptors that mediates chronic pain of IBS. Endosomally targeted PAR2 antagonists are potential therapies for IBS pain. GPCRs in endosomes transmit signals that contribute to human diseases
    corecore