1,844 research outputs found

    Aeroelastic considerations for torsionally soft rotors

    Get PDF
    A research study was initiated to systematically determine the impact of selected blade tip geometric parameters on conformable rotor performance and loads characteristics. The model articulated rotors included baseline and torsionally soft blades with interchangeable tips. Seven blade tip designs were evaluated on the baseline rotor and six tip designs were tested on the torsionally soft blades. The designs incorporated a systemmatic variation in geometric parameters including sweep, taper, and anhedral. The rotors were evaluated in the NASA Langley Transonic Dynamics Tunnel at several advance ratios, lift and propulsive force values, and tip Mach numbers. A track sensitivity study was also conducted at several advance ratios for both rotors. Based on the test results, tip parameter variations generated significant rotor performance and loads differences for both baseline and torsionally soft blades

    Wind-tunnel investigation of the effects of blade tip geometry on the interaction of torsional loads and performance for an articulated helicopter rotor

    Get PDF
    The Langley transonic dynamics tunnel was used to determine the degree of correlation between rotor performance and the dynamic twist generated by changes in blade tip geometry using an articulated rotor with four different tip geometries at advance ratios of 0.20, 0.30 and 0.35. Based on the data obtained, it is concluded that: (1) there appears to be no strong correlation between blade torsion loads and rotor performance prediction; (2) for a given rotor task at each advance ratio investigated, both the azimuthal variation of torsional moment and the mean torsional moment at 81% radius are configuration dependent; (3) reducing the nose down twist on the advancing blade appears to be more important to forward flight performance than increasing the nose down twist on the retreating blade; (4) the rotor inflow model used was important in predicting the performance of the adaptive rotor; and (5) neither rigid blade solidity effects, inflow environment, nor blade torsion loads can be used alone to accurately predict active rotor performance

    Correlation of full-scale helicopter rotor performance in air with model-scale Freon data

    Get PDF
    An investigation was conducted in a transonic dynamics tunnel to measure the performance of a 1/5 scale model helicopter rotor in a Freon atmosphere. Comparisons were made between these data and full scale data obtained in air. Both the model and full scale tests were conducted at advance ratios between 0.30 and 0.40 and advancing tip Mach numbers between 0.79 and 0.95. Results show that correlation of model scale rotor performance data obtained in Freon with full scale rotor performance data in air is good with regard to data trends. Mach number effects were found to be essentially the same for the model rotor performance data obtained in Freon and the full scale rotor performance data obtained in air. It was determined that Reynolds number effects may be of the same magnitude or smaller than rotor solidity effects or blade elastic modeling in rotor aerodynamic performance testing

    Parametric tip effects for conformable rotor applications

    Get PDF
    A research study was initiated to systematically determine the impact of selected blade tip geometric parameters on aeroelasticity conformable rotor performance and loads characteristics. The model articulated rotors included baseline and torsionally soft blades with interchangeable tips. Seven blade tip designs were evaluated on the baseline rotor and three tip designs were tested on the torsionally soft blades. The designs incorporated a systematic variation in three geometric parameters: sweep, taper, and anhedral. The rotors were evaluated in the NASA Langley Transonic Dynamics Tunnel at several advance ratios, lift and propulsive force values, and tip Mach numbers. Based on the test results, tip parameter variations generated significant rotor performance and loads difference for both baseline and torsionally soft blades. Azimuthal variation of elastic twist generated by the tip parameters strongly correlated with rotor performance and loads, but the magnitude of advancing blade elastic twist did not correlate

    Analysis of stability contributions of high dihedral V-tails

    Get PDF
    An investigation was undertaken to determine the effectiveness of four analytical methods (empirical, modified empirical, vortex-lattice, and an inviscid, three dimensional, potential flow, wing body program) to estimate the lateral and longitudinal static stability characteristics of an isolated V-tail wind tunnel model. The experimental tests were conducted in the V/STOL tunnel at a Mach number of 0.18. Angle-of-attack data were obtained from -12 deg to 8 deg at 0 deg sideslip. Sideslip sweeps from -5 deg to 10 deg were made at angles of attack of 4 deg, 0 deg and -4 deg. The V-tail dihedral angles were 45 deg, 50 deg, 55 deg, and 60 deg

    Wind tunnel investigation of an unpowered helicopter fuselage model with a V-type empennage

    Get PDF
    The applicability of a V-type empennage on an unpowered semiscale helicopter fuselage is considered as design criteria for improved directional control devices. Configuration changes included variations of V-tail dihedral angle, planform area, and incidence angle. Of the configurations tested, a V-tail with a dihedral angle of 55 deg, a total planform area of 0.244 sq cm, and an incidence angle of 5 deg most nearly match the trim and static stability of the baseline conventional empennage

    Electrochemical generation of oxygen. 1: The effects of anions and cations on hydrogen chemisorption and anodic oxide film formation on platinum electrode. 2: The effects of anions and cations on oxygen generation on platinum electrode

    Get PDF
    The effects were studied of anions and cations on hydrogen chemisorption and anodic oxide film formation on Pt by linear sweep voltammetry, and on oxygen generation on Pt by potentiostatic overpotential measurement. The hydrogen chemisorption and anodic oxide film formation regions are greatly influenced by anion adsorption. In acids, the strongly bound hydrogen occurs at more cathodic potential when chloride and sulfate are present. Sulfate affects the initial phase of oxide film formation by produced fine structure while chloride retards the oxide-film formation. In alkaline solutions, both strongly and weakly bound hydrogen are influenced by iodide, cyanide, and barium and calcium cations. These ions also influence the oxide film formation. Factors considered to explain these effects are discussed. The Tafel slope for oxygen generation was found to be independent on the oxide thickness and the presence of cations or anions. The catalytic activity indicated by the exchange current density was observed decreasing with increasing oxide layer thickness, only a minor dependence on the addition of certain cations and anions was found

    Legal Profession in the Post War World

    Get PDF

    An analysis of the gust-induced overspeed trends of helicopter rotors

    Get PDF
    Equations for analyzing the potential gust-induced overspeed tendency of helicopter rotors are presented. A parametric analysis was also carried out to illustrate the sensitivity of rotor angular acceleration to changes in rotor lift, propulsive force, tip speed, and forward velocity
    corecore