2,695 research outputs found

    From biomaterial-based data storage to bio-inspired artificial synapse

    Get PDF
    The implementation of biocompatible and biodegradable information storage would be a significant step toward next-generation green electronics. On the other hand, benefiting from high density, multifunction, low power consumption and multilevel data storage, artificial synapses exhibit attractive future for built-in nonvolatile memories and reconstructed logic operations. Here, we provide a comprehensive and critical review on the developments of bio-memories with a view to inspire more intriguing ideas on this area that may finally open up a new chapter in next-generation consumer electronics. We will discuss that biomolecule-based memory employed evolutionary natural biomaterials as data storage node and artificial synapse emulated biological synapse function, which is expected to conquer the bottleneck of the traditional von Neumann architecture. Finally, challenges and opportunities in the aforementioned bio-memory area are presented

    Photonic Memristor for Future Computing: A Perspective

    Full text link
    Photonic computing and neuromorphic computing could address the inherent limitations of traditional von Neumann architecture and gradually invalidate Moore’s law. As photonics applications are capable of storing and processing data in an optical manner with unprecedented bandwidth and high speed, twoâ terminal photonic memristors with a remote optical control of resistive switching behaviors at defined wavelengths ensure the benefit of onâ chip integration, low power consumption, multilevel data storage, and a large variation margin, suggesting promising advantages for both photonic and neuromorphic computing. Herein, the development of photonic memristors is reviewed, as well as their application in photonic computing and emulation on optogeneticsâ modulated artificial synapses. Different photoactive materials acting as both photosensing and storage media are discussed in terms of their opticalâ tunable memory behaviors and underlying resistive switching mechanism with consideration of photogating and photovoltaic effects. Moreover, lightâ involved logic operations, systemâ level integration, and lightâ controlled artificial synaptic memristors along with improved learning tasks performance are presented. Furthermore, the challenges in the field are discussed, such as the lack of a comprehensive understanding of microscopic mechanisms under light illumination and a general constraint of inferior nearâ infrared (NIR) sensitivity.The development of photonic memristors and their application in photonic computing and emulation on optogeneticsâ modulated artificial synapses are reviewed. Photoactive materials as photosensing and storage media are discussed, considering their opticalâ tunable memory behavior and resistive switching mechanism including photogating and photovoltaic effect. Lightâ involved logic operations, system level integration, and artificial synaptic memristors along with improved learning tasks performance are presented.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/153103/1/adom201900766.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/153103/2/adom201900766_am.pd

    Recent Advances in Ambipolar Transistors for Functional Applications

    Full text link
    Ambipolar transistors represent a class of transistors where positive (holes) and negative (electrons) charge carriers both can transport concurrently within the semiconducting channel. The basic switching states of ambipolar transistors are comprised of common offâ state and separated onâ state mainly impelled by holes or electrons. During the past years, diverse materials are synthesized and utilized for implementing ambipolar charge transport and their further emerging applications comprising ambipolar memory, synaptic, logic, and lightâ emitting transistors on account of their special bidirectional carrierâ transporting characteristic. Within this review, recent developments of ambipolar transistor field involving fundamental principles, interface modifications, selected semiconducting material systems, device structures, ambipolar characteristics, and promising applications are highlighted. The existed challenges and prospective for researching ambipolar transistors in electronics and optoelectronics are also discussed. It is expected that the review and outlook are well timed and instrumental for the rapid progress of academic sector of ambipolar transistors in lighting, display, memory, as well as neuromorphic computing for artificial intelligence.Ambipolar transistors represent transistors that allow synchronous transport of electrons and holes and their accumulation within semiconductors. This review provides a comprehensive summary of recent advances in various semiconducting materials realized in ambipolar transistors and their functional memory, synapse, logic, as well as lightâ emitting applications.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/151885/1/adfm201902105_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/151885/2/adfm201902105.pd

    Solution processed molecular floating gate for flexible flash memories

    Get PDF
    Solution processed fullerene (C60) molecular floating gate layer has been employed in low voltage nonvolatile memory device on flexible substrates. We systematically studied the charge trapping mechanism of the fullerene floating gate for both p-type pentacene and n-type copper hexadecafluorophthalocyanine (F16CuPc) semiconductor in a transistor based flash memory architecture. The devices based on pentacene as semiconductor exhibited both hole and electron trapping ability, whereas devices with F16CuPc trapped electrons alone due to abundant electron density. All the devices exhibited large memory window, long charge retention time, good endurance property and excellent flexibility. The obtained results have great potential for application in large area flexible electronic devices

    eIF3a: A new anticancer drug target in the eIF family

    Get PDF
    eIF3a is the largest subunit of eIF3, which is a key player in all steps of translation initiation. During the past years, eIF3a is recognized as a proto-oncogene, which is an important discovery in this field. It is widely reported to be correlated with cancer occurrence, metastasis, prognosis, and therapeutic response. Recently, the mechanisms of eIF3a action in the carcinogenesis are unveiled gradually. A number of cellular, physiological, and pathological processes involving eIF3a are identified. Most importantly, it is emerging as a new potential drug target in the eIF family, and some small molecule inhibitors are being developed. Thus, we perform a critical review of recent advances in understanding eIF3a physiological and pathological functions, with specific focus on its role in cancer and anticancer drug targets

    Self-aligned, full solution process polymer field-effect transistor on flexible substrates

    Get PDF
    Conventional techniques to form selective surface energy regions on rigid inorganic substrates are not suitable for polymer interfaces due to sensitive and soft limitation of intrinsic polymer properties. Therefore, there is a strong demand for finding a novel and compatible method for polymeric surface energy modification. Here, by employing the confined photo-catalytic oxidation method, we successfully demonstrate full polymer filed-effect transistors fabricated through four-step spin-coating process on a flexible polymer substrate. The approach shows negligible etching effect on polymeric film. Even more, the insulating property of polymeric dielectric is not affected by the method, which is vital for polymer electronics. Finally, the self-aligned full polymer field-effect transistors on the flexible polymeric substrate are fabricated, showing good electrical properties and mechanical flexibility under bending tests

    Synthesis of a novel monomer “DDTU-IDI” for the development of low-shrinkage dental resin composites

    Get PDF
    ObjectiveThe current dental resin composites often suffer from polymerization shrinkage, which can lead to microleakage and potentially result in recurring tooth decay. This study presents the synthesis of a novel monomer, (3,9-diethyl-1,5,7,11-tetraoxaspiro[5,5]undecane-3,9-diyl)bis(methylene) bis((2-(3-(prop-1-en-2-yl)phenyl)propan-2-yl)carbamate) (DDTU-IDI), and evaluates its effect in the formulation of low-shrinkage dental resin composites.MethodsDDTU-IDI was synthesized through a two-step reaction route, with the initial synthesis of the required raw material monomer 3,9-diethyl-3,9-dihydroxymethyl-1,5,7,11-tetraoxaspiro-[5,5] undecane (DDTU). The structures were confirmed using Fourier-transform infrared (FT-IR) spectroscopy and hydrogen nuclear magnetic resonance (1HNMR) spectroscopy. Subsequently, DDTU-IDI was incorporated into Bis-GMA-based composites at varying weight percentages (5, 10, 15, and 20 wt%). The polymerization reaction, degree of conversion, polymerization shrinkage, mechanical properties, physicochemical properties and biocompatibility of the low-shrinkage composites were thoroughly evaluated. Furthermore, the mechanical properties were assessed after a thermal cycling test with 10,000 cycles to determine the stability.ResultsThe addition of DDTU-IDI at 10, 15, and 20 wt% significantly reduced the polymerization volumetric shrinkage of the experimental resin composites, without compromising the degree of conversion, mechanical and physicochemical properties. Remarkably, at a monomer content of 20 wt%, the polymerization shrinkage was reduced to 1.83 Âą 0.53%. Composites containing 10, 15, and 20 wt% DDTU-IDI exhibited lower water sorption and higher contact angle. Following thermal cycling, the composites exhibited no significant decrease in mechanical properties, except for the flexural properties.Significance. DDTU-IDI has favorable potential as a component which could produce volume expansion and increase rigidity in the development of low-shrinkage dental resin composites. The development of low-shrinkage composites containing DDTU-IDI appears to be a promising strategy for reducing polymerization shrinkage, thereby potentially enhancing the longevity of dental restorations
    • …
    corecore