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eIF3a is the largest subunit of eIF3, which is a key player in all steps of translation initiation. During the
past years, eIF3a is recognized as a proto-oncogene, which is an important discovery in this field. It is
widely reported to be correlated with cancer occurrence, metastasis, prognosis, and therapeutic
response. Recently, the mechanisms of eIF3a action in the carcinogenesis are unveiled gradually. A
number of cellular, physiological, and pathological processes involving eIF3a are identified. Most
importantly, it is emerging as a new potential drug target in the eIF family, and some small molecule
inhibitors are being developed. Thus, we perform a critical review of recent advances in understanding
eIF3a physiological and pathological functions, with specific focus on its role in cancer and anticancer
drug targets.

© 2017 Published by Elsevier B.V.
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Introduction

Translation is one of the key steps of gene expression, with four
major stages: initiation, elongation, termination, and ribosome
recycling [1]. The initiation step is rate limiting and highly regu-
lated [2]. In eukaryotes, the eukaryotic translation initiation factors
(eIFs) are major players involved in this process with at least 12
members [3]. Among them, eIF3 is the largest and most complex
factor, comprising 13 subunits designated from eIF3a to eIF3m [4].
As the largest subunit of eIF3, eIF3a is widely and extensively
investigated. Great progress has recently been achieved on eIF3a,
and it is emerging as a new potential anti-cancer drug target. In this
review, we provide the latest vision of eIF3a structure, expression,
and its role in cellular biological processes and cancers as well as
evidence on eIF3a as a therapeutic target.

eIF3a structure, expression, and distribution

Human eIF3a is a 170-kDa protein consisting of 1382 amino
acids. The eIF3a gene is located at 10q26, spanning a region of
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46 kbpp DNA (Fig. 1A) [5e8]. It is a highly conserved gene with
mutations mostly in the noncoding region. Fig. 1B summarizes the
frequency of eIF3a somatic mutations in human cancers based on
the analysis of the catalogue of somatic mutations in cancer
(COSMIC) database. Mutation, amplification, and deletion of this
gene has been detected, whichmostly occur in solid tumors, but the
functional significance of them needs to be clarified. However, a
few germline mutations are reported to have functional conse-
quences, including two intronic polymorphisms (rs3824830 and
rs10787899) that are significantly associated with an altered risk of
breast cancer [9]and two exonic polymorphisms (rs3740556 and
rs77382849) that correlated with the response and toxicity of
platinum-based chemotherapy in patients with non-small cell lung
cancer (NSCLC) [10,11]. It is interesting to note that rs77382849 is a
nonsynonymous single nucleotide polymorphism (SNP) located in
exon 16 with amino acid change from Arg to Lys; recently, it has
been observed to be associated with gastric cancer susceptibility
[12]. However, how this mutation affects cancer susceptibility and
drug responses remains elusive.

Recently, the high-resolution architecture of eIF3a protein in the
context of eIF3 complex is visualized by a series of studies [13e20].
eIF3 is a large complex with 13 subunits and organized by two
submodules: the proteasome-COP9-signalosome eIF3/Mpr1, Pad1
N-terminal (PCI/MPN) octamer core (a, c, e, f, h, l, k and m) and five
peripheral (b, d, g, i, and j) subunits [21](Fig. 1). eIF3a has a long and
extended structure to link both core and peripheral modules. There
are three major domains of eIF3a protein: PCI, spectrin, and C-
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Fig. 1. The structure and genetic polymorphisms of eIF3a. (A) Genomic structure of eIF3a. The horizontal line represents its genomic entire length; exons and UTRs are indicated
by green and blue boxes, respectively. The distribution of four SNPs with functional significance is indicated. Coding and noncoding region SNPs are indicated as purple and red,
respectively. (B) The frequency of eIF3a somatic alterations in human cancers. The results are based on the analysis of catalogue of somatic mutations in cancer (COSMIC) database.
(C) Schematic model of positions of eIF3a protein domains. (D) Structure of eIF3a in the context of eIF3 core subunits (a,c,e,h,k,l,m and f) (from des Georges et al. [18].). eIF3a is
colored red. (E) Structure of eIF3a in different orientations, colored variably by domains. CTD: C-terminal domain, HD: helical domain, WHD: winged helix domain (From des
Georges et al. [18].). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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terminal domain (CTD) [22]. The PCI domain is located in the N-
terminus, which mainly contains an a-helix. This domain further
contains an N-terminal helical domain (HD) and a C-terminal
winged helix domain (WHD) [16,23]. eIF3a dimerizes with eIF3c,
and WHDs of two PCI modules serve as the interface [15,18,24].
The second domain of eIF3a is the spectrin domain. The basic
structure of this domain is three helices separated by two loop
regions [25,26]. The exact function of this domain is still unknown,
but it may also mediate the interaction of eIF3awith other proteins.
It is reported that eIF3b and eIF3i concurrently bind to the spectrin
domain, which serves as a docking site for the formation of eIF3a-
b-i-g complex [27]. The largest domain of eIF3a is CTD, and it
contains a subdomain (RP domain) with 10-amino acid repeat
sequence. This sequence can be divided into about 25 repeats of
DDDRGPRRGA [8]. The eIF3a CTD is a long helix bridging eIF3a with
peripheral subunits. In mammals, at least three peripheral subunits
(b, g, and i) are linked in a flexible manner to the core eIF3 module
through the eIF3a CTD helical tail. In addition, it also mediates the
binding of eIF3a with the 40S ribosome to facilitate mRNA
recruitment and scanning [28e31].

In humans, eIF3a appears to be ubiquitously expressed in all
tissues. Its expression profile during development is studied using a
Please cite this article in press as: J.-Y. Yin, et al., eIF3a: A new anticance
10.1016/j.canlet.2017.09.055
mouse model [32]. During fetal development, eIF3a is highly
expressed in all tissues, including the liver, kidney, heart, lung,
stomach, and intestine. Its expression is decreased during the
postnatal stage and becomes undetectable in the kidney, stomach,
and intestine. Consistently, eIF3a protein is also low and unde-
tectable in normal adult human tissues of the liver, lung, colon,
breast, kidney, and ovary [22]. However, eIF3a mRNA can be
detected in all human tissues, especially with high levels in kidney,
pancreas, skeletal muscle, and testes [22,33]. The reason for the
inconsistency in detecting eIF3a mRNA and protein in tissues is
unclear. It is possible that eIF3a expression may be regulated post-
transcriptionally at the translational level. The subcellular distri-
bution of eIF3a has also been reported, and is found to be located in
plasma membranes, cytoplasm, and nuclei [33,34]. About 20% of
eIF3a is associated with plasma and endoplasmic reticulum mem-
branes, the remaining protein is located in the cytoplasm [34], and
a small amount of eIF3a is detected in nucleus [33].

In summary, eIF3a is a highly conserved gene. Its protein has
three major domains and adopts a long, extended structure with a
CTD tail. The PCI domain interacts with core modules of eIF3
(especially eIF3c), while the spectin and CTD domains mediate
interaction with peripheral eIF3 subunits. eIF3a is ubiquitously
r drug target in the eIF family, Cancer Letters (2017), https://doi.org/
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expressed in all tissues, and is mainly located in the cellular
cytoplasm.

eIF3a mediated biological functions

Previously, eIF3a was thought to be just a translation initiation
factor for mRNA translation [35]. Recent accumulating evidence
suggests that eIF3a may have many regulatory functions in cellular,
physiological, and pathological process (Fig. 2).

Cellular process

Translation initiation
As a translation initiation factor, the primary function of eIF3a is

to participate in the formation of the eIF3 complex, and it con-
tributes to the initiation steps in mRNA translation (Fig. 3). First,
eIF3 binds to the 40S subunit ribosome to prevent its association
with the 60S subunit [36,37]. By using cryoelectronmicroscopy, it is
shown that eIF3 binds to the solvent exposed side of the 40S sub-
unit [38]. The N-terminal domain binds to RPS0/S2 and CTD in-
teracts with helices 16e18 of the 18s rRNA, RPS2/S5 and RPS3/S3
[29e31,39e41]. Second, eIF3 stimulates the formation of 43S PIC.
Findings from an in vitro study suggest that eIF3 facilitates the
binding of ternary complex (TC) to the 40S subunit [36,37,42].
Depletion of eIF3a reduces the binding capacity of 40S subunit with
multifactor complex containing TC, eIF1 and eIF5, which is required
for PIC formation [43]. Finally, eIF3 simulates the binding of 43S PIC
with mRNA. In vitro studies have shown that eIF3 binds with mRNA
directly, and it strongly promotes 43S PIC binding with long 50UTR
mRNAs [37,44,45]. On the other hand, eIF3 also interacts with eIF4G
to form a bridge between 43S PIC and eIF4F/mRNA complex [46,47].
Translation can also be initiated by a cap-independent mechanism
mediated by the internal ribosomal entry site (IRES) element in
mRNAs. It recruits the 40S subunit directly to start translation
without scanning from the 50 end of mRNAs [48]. It has previously
been shown that eIF3a together with eIF3c mediates hepatitis C
virus IRES activity by directly binding to it [49e51]. We recently
identified a new IRES element in the 50 UTR of replication protein
A2 (RPA2) and showed that eIF3a bound to this IRES element and
Fig. 2. A schematic overview of signaling pathways involving eIF3a and their corresp
explanatory symbols. XPA/C: xeroderma pigmentosum complementation group A/C, RPA
signal-regulated kinase, RRM2: ribonucleotide reductase M2, TGFb: transforming growth fac
a-smooth muscle actin, NDRG1: N-myc downstream regulated gene-1. ABCE1: ATP binding

Please cite this article in press as: J.-Y. Yin, et al., eIF3a: A new anticance
10.1016/j.canlet.2017.09.055
inhibited its activity [52]. These studies together indicate that eIF3a
is a key player in the process of both cap-dependent and cap-
independent translation initiation.

Cell cycle
The involvement of eIF3a in cell cycle regulation was first re-

ported in yeast [53]. In mammalian cells, eIF3a expression oscillates
with the cell cycle and peaks in the S phase [54,55]. It also mediates
the effect of some cell cycle modulators. Mimosine is a G1 cell cycle
blocker, which is commonly used as a synchronizing agent for
mammalian cells. It decreases eIF3a expression prior to G0/G1 cell
cycle arrest [56]. Serum starvation induces G0/G1 arrest and
nocodazole induces G2/M arrest, both of which are sensitized by
eIF3a knockdown. In contrast, hydroxyurea-induced S phase arrest
is desensitized by eIF3a knockdown. Although the detailed mo-
lecular mechanisms of eIF3a in cell cycle regulation remain un-
known, it is thought that p27kip1, a cyclin-dependent kinase (CDK)
inhibitor that controls the cell cycle progression at G1 phase, is
down-regulated by eIF3a and may mediate the function of eIF3a in
mimosine-induced G1 arrest [56]. However, eIF3a upregulates the
synthesis of ribonucleotide reductase M2 (RRM2), which is
required for DNA synthesis in S phase. This regulatory function of
eIF3a may be required for the S phase and, thus, eIF3a expression
peaks during the S phase [57].

DNA synthesis and repair
DNA synthesis is an essential biological process of cells, and its

regulation is important for controlling cell growth and proliferation.
eIF3a was first observed to regulate DNA synthesis in H1299 cells,
where reducing its expression using antisense cDNA decreases
about 50% global DNA synthesis [57]. This effect is mediated by
decreasing the synthesis of RRM2 protein, which controls the DNA
synthesis rate-limiting step of converting ribonucleotides to their
corresponding deoxyribonucleotides. However, another study un-
veils that knocking down eIF3a increases epidermal growth factor
(EGF)-stimulated DNA synthesis [58]. eIF3a is reported to be a
negative regulator in the EGF/extracellular signal-regulated kinase
(ERK) pathway and inhibits EGF-induced ERK activation. It may
negatively regulate the ERK pathway by binding with b-arrestin 2,
onding biological function. The components in the pathways are indicated as self-
: replication protein A, EGFR: epidermal growth factor receptor, ERK: extracellular
tor b, TbR: TGFb receptor, SMAD3: mothers against decapentaplegic homolog 3, a-SMA:
cassette subfamily E member 1.
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Fig. 3. Schematic model of four major steps of cap-dependent translation initia-
tion in eukaryotes. Step 1: binding of the ternary complex to the 40S ribosomal
subunit to form the 43S pre-initiation complex; step 2: introducing the complex of
mRNA, eIF4B, and eIF4F to the 43S pre-initiation complex; step 3: scanning along
mRNA to the start codon and forming the 48S pre-initiation complex; step 4: binding
of the 60S ribosomal subunit to 48S pre-initiation complex and forming the 80S
ribosome for elongation while releasing initiation factors. Initiation factors, ribosomes,
50-cap structure (m7G), the initiation codon (AUG), and mRNA are shown as self-
explanatory symbols.
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SHC, and Raf-1 [58]. Although it is unknown what causes this
discrepancy in eIF3a regulation of DNA synthesis, EGF stimulation
may overcome the eIF3a effect on basal DNA synthesis and it is also
possible that eIF3a may regulate DNA synthesis through different
pathways in different cell types used in these studies.

DNA repair is one of the keysystems tomaintain cell homeostasis
and its activity is vital to cell survival following DNA damage. The
major DNA repair systems include nucleotide excision repair, base
excision repair, double-strand break repair, and mismatch repair. A
number of chemotherapeutic drugs, such as cisplatin, kill tumor
cells by creating DNA lesions. Cell survival against these drugs is
largely attributed to the DNA repair capacity of the cells. Recently, it
was found that eIF3a contributed to cellular sensitivity to cisplatin
by suppressing nucleotide excision repair activity, the major
mechanism to repair platinum-induced DNA damages [59,60]. It
was determined that eIF3a suppresses the synthesis of key proteins
in this pathway including xeroderma pigmentosum complemen-
tation group A (XPA), XPC, Rad23B, and replication protein A (RPA)
and consequently, it sensitizes the cells to cisplatin [59,61].
Please cite this article in press as: J.-Y. Yin, et al., eIF3a: A new anticance
10.1016/j.canlet.2017.09.055
Physiological and pathological process

Differentiation
The regulatory role of eIF3a in differentiation was first investi-

gated in intestinal cells by using a mouse model [32]. eIF3a
expression is mainly present in the fetus, but dramatically decreases
or disappears in the postnatal stage. In the stomach and intestinal
tissues, eIF3a expression negatively correlates with differentiation
of epithelial cells. Further ectopic expression of eIF3a inhibits dif-
ferentiation, whereas reduction of eIF3a expression promotes cell
differentiation. This result indicates that eIF3a is a negative regulator
of cell differentiation. The association of eIF3awith differentiation is
also observed in tumors, with well-differentiated cancer cells
showing substantially less eIF3a expression [62]. It is observed that
eIF3a expression drops as the human colon cancer cell line CaCo-2 is
induced to differentiate by confluency [32]. In tumor tissues, eIF3a
expression is lower in the well-differentiated cancers from patients
with cervical, bladder, and colon cancer [63e65]. Particularly in
cervical cancer, eIF3a expression is completely lost after cells reach a
differentiated status [64]. However, in gastric and esophagus can-
cers, eIF3a is highly expressed in well-differentiated tissues [66,67].
The reason for the different eIF3a expression patterns in different
cancers is unknown; one possibility is that the correlation is variable
in different cancers. Another study investigated the role of eIF3a in
the benzo(a)pyrene inhibition of cell differentiation [68]. Benzo(a)
pyrene impairs the differentiation of bone narrow-derived dendritic
cells and down-regulates eIF3a, indicating the possible role of eIF3a
as a positive regulator of differentiation. Obviously, these results
together showed that the detailed role of eIF3a in differentiation is
still not fully appreciated.

Fibrosis
Fibrosis is a pathologic change of disease-related injury with

characterization of fibroblast proliferation and extracellular matrix
accumulation [69]. It occurs in almost all major organs, including
the lung, kidney, heart, liver, and skin. Recently, eIF3a was found to
be involved in fibrosis through via regulation of the TGF-b1/SMAD3
signaling pathway [70e75]. TGF-b1 binds to the specific cell surface
receptors to phosphorylate SMAD3 and subsequently regulates
gene expression in the nucleus. The TGF-b1/SMAD3 signaling
pathway plays a crucial role in the pathogenesis of fibrosis. In the
rat model of pulmonary fibrosis, TGF-b1 induces expression of
eIF3a and a-smooth muscle actin. In addition, eIF3a knockdown
reverses the effect of TGF-b1 induced fibroblast proliferation and
expression of a-smooth muscle actin, collagen I, and collagen III. In
agreement with pulmonary fibrosis, eIF3a is also found to be up
regulated in human renal fibrotic tissues and reduction of eIF3a
inhibited TGF-b1 induced SMAD3 phosphorylation in the proximal
tubular epithelial cell line HK-2 [76]. These studies together suggest
that eIF3a may play a key role in the TGF-b1 induced fibrosis by
mediating SMAD3 phosphorylation [73e75].

eIF3a and cancer

Over the past several years, eIF3a has been recognized as a
proto-oncogene, which is the most important discovery in this
field. It is suggested to be correlated with cancer occurrence,
metastasis, prognosis, and therapeutic response. eIF3a is emerging
as a new potential anticancer drug target in the eIF family (Fig. 4).

eIF3a and carcinogenesis

The accumulating evidence suggests that eIF3a is potentially a
proto-oncogene and perhaps plays an important role in tumori-
genesis. eIF3a is shown to be up regulated in the carcinomas of
r drug target in the eIF family, Cancer Letters (2017), https://doi.org/
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breast [62], cervix [64], esophagus [67], lung [22], stomach [66],
colon [65], ovary [61], urinary bladder [63], oral cavity [77], and
pancreas [78]. It has also been found that eIF3a polymorphisms
may associate with cancer susceptibility of breast [9], stomach [12]
and pancreas [79]. In addition, eIF3a expression is reported to be
associated with metastasis of laryngeal and pancreatic cancers
[78,80]. Ectopic overexpression of eIF3a promotes cell growth,
malignant transformation, and apoptosis resistance [81]. Consis-
tently, knocking down eIF3a impairs the ability of cell proliferation,
colony formation, wound healing, migration and invasion in cancer
cells of lung, urinary bladder and pancreas [57,63,78]. In the xen-
otransplanted mouse model of urinary bladder and pancreatic
cancer, the tumor volume and weight of eIF3a-depleted xenografts
is significantly decreased compared with that of tumors formed by
control cells [63,78]. Based on these results, both in vivo and in vitro
studies strongly suggest that eIF3a may be a proto-oncogene
involved in tumorigenesis and metastasis.

As discussed previously, eIF3a may regulate synthesis of a sub-
population of proteins. Thus, it is possible that these proteins may
mediate the proto-oncogenic function of eIF3a. Our previous
studies identified some specific mRNAs under eIF3a regulation,
including RRM2, a-tubulin, p27kip, XPA, XPC, and RPA
[56,57,59e61]. They are important molecules in the pathway of
DNA synthesis and cell cycle and DNA repair, which are cellular
processes related to tumorigenesis. We also identified that eIF3a
bound the RPA2 50 UTR to regulate its IRES activity, unveiling one of
the mechanisms of eIF3a-regulating translation. A recent study
used photoactivatable ribonucleoside-enhanced crosslinking and
immunoprecipitation sequencing technology to detect transcripts
that interact with eIF3 at a genome-wide scale [82]. This study
shows that eIF3a binds with 375 transcripts, most of which are
involved in cell cycle, differentiation, apoptosis and growth, via 50

UTR. All these studies suggest the presence of an eIF3a-targeting
mRNA subset (ITRS) that is related to tumorigenesis cellular pro-
cesses. eIF3a may induce oncogenesis by regulating the translation
of ITRS members by binding with their 50 UTR.

eIF3a and cancer prognosis

In addition to tumorigenesis, eIF3a is also widely reported to
correlate with cancer prognosis. Patients with high eIF3a expression
have better survival than those with low eIF3a in cancers of urinary
bladder [63], cervix [64], ovary [61], esophagus [67], oral cavity [77]
and lung [83]. However, the correlation of high eIF3a expressionwith
better survival is not in agreement with what we expect of a proto-
oncogene, and the mechanisms of eIF3a action in cancer prognosis
largely remain unknown. Our previous study showed that eIF3a
Fig. 4. Role of eIF3a in tumorigenesis. eIF3a expresses at a low level in normal tis-
sues, increases significantly in the presence of cancer, and decreases again in high
grade tumors. Some representative biological functions of eIF3a in normal, low-grade,
and high-grade tumors are indicated accordingly.
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knockdownoroverexpression, respectively, increased anddecreased
the cellular resistance to some anticancer drugs, including cisplatin,
etoposide, and anthracyclines [77]. It is noteworthy that these drugs
are major constituents of therapeutic regimens for cancers. Thus, we
propose that eIF3a improves cancer prognosis possibly by regulating
cellular response to some anticancer drugs.

eIF3a as a therapeutic target

A number of components in translational machine have been
identified that correlate with carcinogenesis. Thus, targeting these
molecules represents an attractive strategy for the treatment of
cancer [84]. eIFs occupy the central stage of translational control and
the detailed mechanisms of their action in malignant trans-
formation is being revealed. Therefore, theyare becoming a group of
interesting and attractive targets for cancer therapeutic in-
terventions [35]. Previous studies mainly focused on the eIF4F
complex, which is composed of eIF4E, eIF4G and eIF4F. Inhibitors of
eIF4Aare identifiedbyhigh-throughput screening,wherebyphase II
clinical trials of eIF4E antisense oligonucleotides in combination
with chemotherapy are conducted [84,85]. As eIF3a is recognized as
a proto-oncogene, it is also becoming a potential drug target for
cancers. A couple of studies showed that knocking down eIF3a
expression using antisense cDNA or small interfering RNA reversed
themalignant phenotype of cancer cells [57,78]. The first compound
identified as an eIF3a inhibitor is mimosine, which is a plant amino
acid derived from Mimosa pudica seeds [56]. Mimosine treatment
decreases eIF3a expression and further affects the translation of
downstream genes. However, mimosine is a G1 phase blocker of cell
cycle progression in mammalian cells and it is not clear if it selec-
tively inhibits eIF3a expression. Thus, it may not develop into a drug
targeting eIF3a. One group develops a series of compounds as eIF3a
inhibitors based onpyridin-2(1H)-one scaffold [86]. Comparedwith
mimosine, two compounds (NCE22andNCE30) showedbetter eIF3a
inhibition effect at the same or lower concentration. In addition,
NCE22 showed good specificity in cancer cell growth inhibition, as
indicated by the value of IC50(NIH3T3)/IC50(A549). These compounds
can be considered as candidate small molecule eIF3a regulators,
which could be potential anti-cancer agents.

Conclusion and perspective

eIF3a is an important protein during translation initiation. It is
observed to participate in a number of cellular, physiological, and
pathological processes, including translation initiation, cell cycle,
differentiation, fibrosis, carcinogenesis, and DNA synthesis and
repair. However, the detailed role of eIF3a in these processes is
unclear and constitutes one of the major directions for future study.
An important discovery is that eIF3a is a potential oncogene, it is
involved in cancer occurrence, metastasis, prognosis, and thera-
peutic response. However, to clarify the exact mechanisms of eIF3a
oncogenic action remains a challenge. We proposed that eIF3a may
induce oncogenesis by regulating the translation of a subset of
cancer related mRNAs by binding with their 50 UTR. As we gain
deep insight into eIF3a physiological and pathological function, it is
becoming a new potential drug target. Although some inhibitors
are already developed and have good cancer cell growth inhibition,
more efforts are still needed to improve current molecules or
design new small molecule eIF3a regulators.
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