636 research outputs found

    Topological Quantum Phase Transition in Synthetic Non-Abelian Gauge Potential

    Full text link
    The method of synthetic gauge potentials opens up a new avenue for our understanding and discovering novel quantum states of matter. We investigate the topological quantum phase transition of Fermi gases trapped in a honeycomb lattice in the presence of a synthetic non- Abelian gauge potential. We develop a systematic fermionic effective field theory to describe a topological quantum phase transition tuned by the non-Abelian gauge potential and ex- plore its various important experimental consequences. Numerical calculations on lattice scales are performed to compare with the results achieved by the fermionic effective field theory. Several possible experimental detection methods of topological quantum phase tran- sition are proposed. In contrast to condensed matter experiments where only gauge invariant quantities can be measured, both gauge invariant and non-gauge invariant quantities can be measured by experimentally generating various non-Abelian gauges corresponding to the same set of Wilson loops

    Aligned electrospun fibers for neural patterning

    Get PDF
    OBJECTIVES: To test a 3D approach for neural network formation, alignment, and patterning that is reproducible and sufficiently stable to allow for easy manipulation. RESULTS: A novel cell culture system was designed by engineering a method for the directional growth of neurons. This uses NG108-15 neuroblastoma x glioma hybrid cells cultured on suspended and aligned electrospun fibers. These fiber networks improved cellular directionality, with alignment angle standard deviations significantly lower on fibers than on regular culture surfaces. Morphological studies found nuclear aspect ratios and cell projection lengths to be unchanged, indicating that cells maintained neural morphology while growing on fibers and forming a 3D network. Furthermore, fibronectin-coated fibers enhanced neurite extensions for all investigated time points. Differentiated neurons exhibited significant increases in average neurite lengths 96 h post plating, and formed neurite extensions parallel to suspended fibers, as visualized through scanning electron microscopy. CONCLUSIONS: The developed model has the potential to serve as the basis for advanced 3D studies, providing an original approach to neural network patterning and setting the groundwork for further investigations into functionality

    A topological insulator surface under strong Coulomb, magnetic and disorder perturbations

    Full text link
    Three dimensional topological insulators embody a newly discovered state of matter characterized by conducting spin-momentum locked surface states that span the bulk band gap as demonstrated via spin-resolved ARPES measurements . This highly unusual surface environment provides a rich ground for the discovery of novel physical phenomena. Here we present the first controlled study of the topological insulator surfaces under strong Coulomb, magnetic and disorder perturbations. We have used interaction of iron, with a large Coulomb state and significant magnetic moment as a probe to \textit{systematically test the robustness} of the topological surface states of the model topological insulator Bi2_2Se3_3. We observe that strong perturbation leads to the creation of odd multiples of Dirac fermions and that magnetic interactions break time reversal symmetry in the presence of band hybridization. We also present a theoretical model to account for the altered surface of Bi2_2Se3_3. Taken collectively, these results are a critical guide in manipulating topological surfaces for probing fundamental physics or developing device applications.Comment: 14 pages, 4 Figures. arXiv admin note: substantial text overlap with arXiv:1009.621

    Topological Photonics

    Get PDF
    Topology is revolutionizing photonics, bringing with it new theoretical discoveries and a wealth of potential applications. This field was inspired by the discovery of topological insulators, in which interfacial electrons transport without dissipation even in the presence of impurities. Similarly, new optical mirrors of different wave-vector space topologies have been constructed to support new states of light propagating at their interfaces. These novel waveguides allow light to flow around large imperfections without back-reflection. The present review explains the underlying principles and highlights the major findings in photonic crystals, coupled resonators, metamaterials and quasicrystals.Comment: progress and review of an emerging field, 12 pages, 6 figures and 1 tabl

    Adult Drosophila melanogaster evolved for antibacterial defense invest in infection-induced expression of both humoral and cellular immunity genes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>While the transcription of innate immunity genes in response to bacterial infection has been well-characterised in the Drosophila model, we recently demonstrated the capacity for such transcription to evolve in flies selected for improved antibacterial defense. Here we use this experimental system to examine how insects invest in constitutive versus infection-induced transcription of immunity genes. These two strategies carry with them different consequences with respect to energetic and pleiotropic costs and may be more or less effective in improving defense depending on whether the genes contribute to humoral or cellular aspects of immunity.</p> <p>Findings</p> <p>Contrary to expectation we show that selection preferentially increased the infection-induced expression of both cellular and humoral immunity genes. Given their functional roles, infection induced increases in expression were expected for the humoral genes, while increases in constitutive expression were expected for the cellular genes. We also report a restricted ability to improve transcription of immunity genes that is on the order of 2-3 fold regardless of total transcription level of the gene.</p> <p>Conclusions</p> <p>The evolved increases in infection-induced expression of the cellular genes may result from specific cross talk with humoral pathways or from generalised strategies for enhancing immunity gene transcription. A failure to see improvements in constitutive expression of the cellular genes suggests either that increases might come at too great a cost or that patterns of expression in adults are decoupled from the larval phase where increases would be most effective. The similarity in fold change increase across all immunity genes may suggest a shared mechanism for the evolution of increased transcription in small, discrete units such as duplication of <it>cis</it>-regulatory elements.</p

    Structural and Thermodynamic Approach to Peptide Immunogenicity

    Get PDF
    In the conventional paradigm of humoral immunity, B cells recognize their cognate antigen target in its native form. However, it is well known that relatively unstable peptides bearing only partial structural resemblance to the native protein can trigger antibodies recognizing higher-order structures found in the native protein. On the basis of sound thermodynamic principles, this work reveals that stability of immunogenic proteinlike motifs is a critical parameter rationalizing the diverse humoral immune responses induced by different linear peptide epitopes. In this paradigm, peptides with a minimal amount of stability (ΔGX<0 kcal/mol) around a proteinlike motif (X) are capable of inducing antibodies with similar affinity for both peptide and native protein, more weakly stable peptides (ΔGX>0 kcal/mol) trigger antibodies recognizing full protein but not peptide, and unstable peptides (ΔGX>8 kcal/mol) fail to generate antibodies against either peptide or protein. Immunization experiments involving peptides derived from the autoantigen histidyl-tRNA synthetase verify that selected peptides with varying relative stabilities predicted by molecular dynamics simulations induce antibody responses consistent with this theory. Collectively, these studies provide insight pertinent to the structural basis of immunogenicity and, at the same time, validate this form of thermodynamic and molecular modeling as an approach to probe the development/evolution of humoral immune responses

    Functional characterization of the PHT1 family transporters of foxtail millet with development of a novel Agrobacterium-mediated transformation procedure

    Get PDF
    Phosphate is an essential nutrient for plant growth and is acquired from the environment and distributed within the plant in part through the action of phosphate transporters of the PHT1 family. Foxtail millet (Setaria italica) is an orphan crop essential to the food security of many small farmers in Asia and Africa and is a model system for other millets. A novel Agrobacterium-mediated transformation and direct plant regeneration procedure was developed from shoot apex explants and used to downregulate expression of 3 members of the PHT1 phosphate transporter family SiPHT1;2 SiPHT1;3 and SiPHT1;4. Transformants were recovered with close to 10% efficiency. The downregulation of individual transporters was confirmed by RT-PCR. Downregulation of individual transporters significantly reduced the total and inorganic P contents in shoot and root tissues and increased the number of lateral roots and root hairs showing they have non-redundant roles. Downregulation of SiPHT1;2 had the strongest effect on total and inorganic P in shoot and root tissues. Complementation experiments in S. cerevisiae provide evidence for the ability of SiPHT1;1, 1;2, 1;3, 1;7 and 1;8 to function as high affinity Pi transporters. This work will aid development of improved millet varieties for global food security

    Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks, 1990-2015: a systematic analysis for the Global Burden of Disease Study 2015

    Get PDF
    SummaryBackground The Global Burden of Diseases, Injuries, and Risk Factors Study 2015 provides an up-to-date synthesis of the evidence for risk factor exposure and the attributable burden of disease. By providing national and subnational assessments spanning the past 25 years, this study can inform debates on the importance of addressing risks in context. Methods We used the comparative risk assessment framework developed for previous iterations of the Global Burden of Disease Study to estimate attributable deaths, disability-adjusted life-years (DALYs), and trends in exposure by age group, sex, year, and geography for 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks from 1990 to 2015. This study included 388 risk-outcome pairs that met World Cancer Research Fund-defined criteria for convincing or probable evidence. We extracted relative risk and exposure estimates from randomised controlled trials, cohorts, pooled cohorts, household surveys, census data, satellite data, and other sources. We used statistical models to pool data, adjust for bias, and incorporate covariates. We developed a metric that allows comparisons of exposure across risk factors—the summary exposure value. Using the counterfactual scenario of theoretical minimum risk level, we estimated the portion of deaths and DALYs that could be attributed to a given risk. We decomposed trends in attributable burden into contributions from population growth, population age structure, risk exposure, and risk-deleted cause-specific DALY rates. We characterised risk exposure in relation to a Socio-demographic Index (SDI). Findings Between 1990 and 2015, global exposure to unsafe sanitation, household air pollution, childhood underweight, childhood stunting, and smoking each decreased by more than 25%. Global exposure for several occupational risks, high body-mass index (BMI), and drug use increased by more than 25% over the same period. All risks jointly evaluated in 2015 accounted for 57·8% (95% CI 56·6–58·8) of global deaths and 41·2% (39·8–42·8) of DALYs. In 2015, the ten largest contributors to global DALYs among Level 3 risks were high systolic blood pressure (211·8 million [192·7 million to 231·1 million] global DALYs), smoking (148·6 million [134·2 million to 163·1 million]), high fasting plasma glucose (143·1 million [125·1 million to 163·5 million]), high BMI (120·1 million [83·8 million to 158·4 million]), childhood undernutrition (113·3 million [103·9 million to 123·4 million]), ambient particulate matter (103·1 million [90·8 million to 115·1 million]), high total cholesterol (88·7 million [74·6 million to 105·7 million]), household air pollution (85·6 million [66·7 million to 106·1 million]), alcohol use (85·0 million [77·2 million to 93·0 million]), and diets high in sodium (83·0 million [49·3 million to 127·5 million]). From 1990 to 2015, attributable DALYs declined for micronutrient deficiencies, childhood undernutrition, unsafe sanitation and water, and household air pollution; reductions in risk-deleted DALY rates rather than reductions in exposure drove these declines. Rising exposure contributed to notable increases in attributable DALYs from high BMI, high fasting plasma glucose, occupational carcinogens, and drug use. Environmental risks and childhood undernutrition declined steadily with SDI; low physical activity, high BMI, and high fasting plasma glucose increased with SDI. In 119 countries, metabolic risks, such as high BMI and fasting plasma glucose, contributed the most attributable DALYs in 2015. Regionally, smoking still ranked among the leading five risk factors for attributable DALYs in 109 countries; childhood underweight and unsafe sex remained primary drivers of early death and disability in much of sub-Saharan Africa. Interpretation Declines in some key environmental risks have contributed to declines in critical infectious diseases. Some risks appear to be invariant to SDI. Increasing risks, including high BMI, high fasting plasma glucose, drug use, and some occupational exposures, contribute to rising burden from some conditions, but also provide opportunities for intervention. Some highly preventable risks, such as smoking, remain major causes of attributable DALYs, even as exposure is declining. Public policy makers need to pay attention to the risks that are increasingly major contributors to global burden. Funding Bill & Melinda Gates Foundation

    Binding of Tetracycline and Chlortetracycline to the Enzyme Trypsin: Spectroscopic and Molecular Modeling Investigations

    Get PDF
    Tetracycline (TC) and chlortetracycline (CTC) are common members of the widely used veterinary drug tetracyclines, the residue of which in the environment can enter human body, being potentially harmful. In this study, we establish a new strategy to probe the binding modes of TC and CTC with trypsin based on spectroscopic and computational modeling methods. Both TC and CTC can interact with trypsin with one binding site to form trypsin-TC (CTC) complex, mainly through van der Waals' interactions and hydrogen bonds with the affinity order: TC>CTC. The bound TC (CTC) can result in inhibition of trypsin activity with the inhibition order: CTC>TC. The secondary structure and the microenvironment of the tryptophan residues of trypsin were also changed. However, the effect of CTC on the secondary structure content of trypsin was contrary to that of TC. Both the molecular docking study and the trypsin activity experiment revealed that TC bound into S1 binding pocket, competitively inhibiting the enzyme activity, and CTC was a non-competitive inhibitor which bound to a non-active site of trypsin, different from TC due to the Cl atom on the benzene ring of CTC which hinders CTC entering into the S1 binding pocket. CTC does not hinder the binding of the enzyme substrate, but the CTC-trypsin-substrate ternary complex can not further decompose into the product. The work provides basic data for clarifying the binding mechanisms of TC (CTC) with trypsin and can help to comprehensively understanding of the enzyme toxicity of different members of tetracyclines in vivo
    corecore