15,525 research outputs found

    Intelligent management of on-street parking provision for the autonomous vehicles era

    Get PDF
    The increasing degree of connectivity between vehicles and infrastructure, and the impending deployment of autonomous vehicles (AV) in urban streets, presents unique opportunities and challenges regarding the on-street parking provision for AVs. This study develops a novel simulation-optimisation approach for intelligent curbside management, based on a metaheuristic technique. The hybrid method balances curb lanes for driving or parking, aiming to minimise the average traffic delay. The model is tested using an idealised grid layout with a range of flow rates and parking policies. Results demonstrate delay decreased by 9%-27% from the benchmark case. Additionally, the traffic delay distribution shows the trade-offs between expanding road capacity and minimising traffic demand through curb management, indicating the interplay between curb parking and traffic management in the AV era

    Relaxation of Spin Polarized 3^3He in Mixtures of 3^3He and 4^4He Below the 4^4He Lambda Point

    Get PDF
    We report the first study of the depolarization behavior of spin polarized 3He in a mixture of 3He-4He at a temperature below the 4He Lambda point in a deuterated TetraPhenyl Butadiene-doped deuterated PolyStyrene (dTPB-dPS) coated acrylic cell. In our experiment the measured 3He relaxation time is due to the convolution of the 3He longitudinal relaxation time, T1, and the diffusion time constant of 3He in superfluid 4He since depolarization takes place on the walls. We have obtained a 3He relaxation time ~3000 seconds at a temperature around 1.9K. We have shown that it's possible to achieve values of wall depolarization probability on the order of (1-2)x10^-7 for polarized 3He in the superfluid 4He from a dTPB-dPS coated acrylic surface.Comment: The Model used to interpret the data has been change

    Planar cyclotron motion in unidirectional superlattices defined by strong magnetic and electric fields: Traces of classical orbits in the energy spectrum

    Full text link
    We compare the quantum and the classical description of the two-dimensional motion of electrons subjected to a perpendicular magnetic field and a one-dimensional lateral superlattice defined by spatially periodic magnetic and electric fields of large amplitudes. We explain in detail the complicated energy spectra, consisting of superimposed branches of strong and of weak dispersion, by the correspondence between the respective eigenstates and the ``channeled'' and ``drifting'' orbits of the classical description.Comment: 11 pages, 11 figures, to appear in Physical Review

    New pulse profile variability associated with a glitch of PSR J0738-4042

    Full text link
    The close correlation observed between emission state and spin-down rate change of pulsars has many implications both for the magnetospheric physics and the neutron star interior. The middle-aged pulsar PSR J0738−-4042, which had been observed to display variations in the pulse profile associated with its spin-down rate change due to external effects, is a remarkable example. In this study, based on the 12.5-yr combined public timing data from UTMOST and Parkes, we have detected a new emission-rotation correlation in PSR J0738−-4042 concurrent with a glitch. A glitch that occurred at MJD 57359(5) (December 3, 2015) with Δν/ν∼0.36(4)×10−9\Delta\nu/\nu \sim 0.36(4)\times 10^{-9} is the first glitch event observed in this pulsar and is probably the underlying cause of the emission-rotation correlation. Unlike the usual post-glitch behaviours, the braking torque on the pulsar has continued to increase over 1380 d, corresponding to a significant decrease in ν¨\ddot{\nu}. As for changes in the pulse profile after the glitch, the relative amplitude of the leading component weakens drastically, while the middle component becomes stronger. A combined model of crustquake induced platelet movement and vortex creep response is invoked to account for this rare correlation. In this scenario, magnetospheric state-change is naturally linked to the pulsar-intrinsic processes that give rise to a glitch.Comment: 13 pages, 6 figures. Accepted for publication in MNRAS. Comments Welcom

    Chronic activation of PPARα with fenofibrate reduces autophagic proteins in the liver of mice independent of FGF21

    Get PDF
    Autophagy is a catabolic mechanism to degrade cellular components to maintain cellular energy levels during starvation, a condition where PPARα may be activated. Here we report a reduced autophagic capacity in the liver following chronic activation of PPARα with fenofibrate (FB) in mice. Chronic administration of the PPARα agonist FB substantially reduced the levels of multiple autophagy proteins in the liver (Atg3, Agt4B, Atg5, Atg7 and beclin 1) which were associated with a decrease in the light chain LC3II/LC3I ratio and the accumulation of p62. This was concomitant with an increase in the expression of lipogenic proteins mSREBP1c, ACC, FAS and SCD1. These effects of FB were completely abolished in PPARα-/- mice but remained intact in mice with global deletion of FGF21, a key downstream mediator for PPARα-induced effects. Further studies showed that decreased the content of autophagy proteins by FB was associated with a significant reduction in the level of FoxO1, a transcriptional regulator of autophagic proteins, which occurred independently of both mTOR and Akt. These findings suggest that chronic stimulation of PPARα may suppress the autophagy capacity in the liver as a result of reduced content of a number of autophagy-associated proteins independent of FGF21

    Design and analysis of fractional factorial experiments from the viewpoint of computational algebraic statistics

    Full text link
    We give an expository review of applications of computational algebraic statistics to design and analysis of fractional factorial experiments based on our recent works. For the purpose of design, the techniques of Gr\"obner bases and indicator functions allow us to treat fractional factorial designs without distinction between regular designs and non-regular designs. For the purpose of analysis of data from fractional factorial designs, the techniques of Markov bases allow us to handle discrete observations. Thus the approach of computational algebraic statistics greatly enlarges the scope of fractional factorial designs.Comment: 16 page
    • …
    corecore