34,340 research outputs found

    Variational semi-blind sparse deconvolution with orthogonal kernel bases and its application to MRFM

    Get PDF
    We present a variational Bayesian method of joint image reconstruction and point spread function (PSF) estimation when the PSF of the imaging device is only partially known. To solve this semi-blind deconvolution problem, prior distributions are specified for the PSF and the 3D image. Joint image reconstruction and PSF estimation is then performed within a Bayesian framework, using a variational algorithm to estimate the posterior distribution. The image prior distribution imposes an explicit atomic measure that corresponds to image sparsity. Importantly, the proposed Bayesian deconvolution algorithm does not require hand tuning. Simulation results clearly demonstrate that the semi-blind deconvolution algorithm compares favorably with previous Markov chain Monte Carlo (MCMC) version of myopic sparse reconstruction. It significantly outperforms mismatched non-blind algorithms that rely on the assumption of the perfect knowledge of the PSF. The algorithm is illustrated on real data from magnetic resonance force microscopy (MRFM)

    On gauge-invariant Green function in 2+1 dimensional QED

    Full text link
    Both the gauge-invariant fermion Green function and gauge-dependent conventional Green function in 2+1 2+1 dimensional QED are studied in the large N N limit. In temporal gauge, the infra-red divergence of gauge-dependent Green function is found to be regulariable, the anomalous dimension is found to be η=643π2N \eta= \frac{64}{3 \pi^{2} N} . This anomalous dimension was argued to be the same as that of gauge-invariant Green function. However, in Coulomb gauge, the infra-red divergence of the gauge-dependent Green function is found to be un-regulariable, anomalous dimension is even not defined, but the infra-red divergence is shown to be cancelled in any gauge-invariant physical quantities. The gauge-invariant Green function is also studied directly in Lorentz covariant gauge and the anomalous dimension is found to be the same as that calculated in temporal gauge.Comment: 8 pages, 6 figures, to appear in Phys. Rev.

    Time correlated quantum amplitude damping channel

    Get PDF
    We analyze the problem of sending classical information through qubit channels where successive uses of the channel are correlated. This work extends the analysis of C. Macchiavello and G. M. Palma to the case of a non-Pauli channel - the amplitude damping channel. Using the channel description outlined in S. Daffer, et al, we derive the correlated amplitude damping channel. We obtain a similar result to C. Macchiavello and G. M. Palma, that is, that under certain conditions on the degree of channel memory, the use of entangled input signals may enhance the information transmission compared to the use of product input signals.Comment: 9 pages, REVTex

    Gauge-invariant Green function in 3+1 dimensional QED (QCD) and 2+1 dimensional Abelian (Non-Abelian) Chern-Simon theory

    Full text link
    By applying the simple and effective method developed to study the the gauge-invariant fermion Green function in 2+1 2+1 dimensional non-compact QED, we study the gauge-invariant Green function in 3+1 3+1 dimensional QED and 2+1 2+1 dimensional non-compact Chern-Simon theory. We also extend our results to the corresponding SU(M) SU(M) non-Abelian gauge theories. Implications for Fractional Quantum Hall effect are briefly discussed.Comment: 8 pages, 4 figures, published versio

    Monoclinic phase in the relaxor-based piezo-/ ferroelectric Pb(Mg1/3_{1/3}Nb2/3)O3_{2/3})O_3-PbTiO3_3 system

    Get PDF
    A ferroelectric monoclinic phase of space group CmCm (MAM_A type) has been discovered in 0.65Pb(Mg1/3_{1/3}Nb2/3)O3_{2/3})O_3-0.35PbTiO3_3 by means of high resolution synchrotron X-ray diffraction. It appears at room temperature in a single crystal previously poled under an electric field of 43 kV/cm applied along the pseudocubic [001] direction, in the region of the phase diagram around the morphotropic phase boundary between the rhombohedral (R3m) and the tetragonal (P4mm) phases. The monoclinic phase has lattice parameters a = 5.692 A, b = 5.679 A, c = 4.050 A and β\beta = 90.1590.15^{\circ}, with the bm_m-axis oriented along the pseudo-cubic [110] direction . It is similar to the monoclinic phase observed in PbZr1x_{1-x}Tix_xO3_3, but different from that recently found in Pb(Zn1/3_{1/3}Nb2/3)O3_{2/3})O_3-PbTiO3_3, which is of space group PmPm (MCM_C type).Comment: Revised version after referees' comments. PDF file. 6 pages, 4 figures embedde

    Momentum Distribution of Near-Zero-Energy Photoelectrons in the Strong-Field Tunneling Ionization in the Long Wavelength Limit

    Full text link
    We investigate the ionization dynamics of Argon atoms irradiated by an ultrashort intense laser of a wavelength up to 3100 nm, addressing the momentum distribution of the photoelectrons with near-zero-energy. We find a surprising accumulation in the momentum distribution corresponding to meV energy and a \textquotedblleft V"-like structure at the slightly larger transverse momenta. Semiclassical simulations indicate the crucial role of the Coulomb attraction between the escaping electron and the remaining ion at extremely large distance. Tracing back classical trajectories, we find the tunneling electrons born in a certain window of the field phase and transverse velocity are responsible for the striking accumulation. Our theoretical results are consistent with recent meV-resolved high-precision measurements.Comment: 5 pages, 4 figure

    The dual parameterization of the proton generalized parton distribution functions H and E and description of the DVCS cross sections and asymmetries

    Get PDF
    We develop the minimal model of a new leading order parameterization of GPDs introduced by Shuvaev and Polyakov. The model for GPDs H and E is formulated in terms of the forward quark distributions, the Gegenbauer moments of the D-term and the forward limit of the GPD E. The model is designed primarely for small and medium-size values of x_B, x_B \leq 0.2. We examined two different models of the t-dependence of the GPDs: The factorized exponential model and the non-factorized Regge-motivated model. Using our model, we successfully described the DVCS cross section measured by H1 and ZEUS, the moments of the beam-spin A_{LU}^{\sin \phi}, beam-charge A_{C}^{\cos \phi} and transversely-polarized target A_{UT}^{\sin \phi \cos \phi} DVCS asymmetries measured by HERMES and A_{LU}^{\sin \phi} measured by CLAS. The data on A_{C}^{\cos \phi} prefers the Regge-motivated model of the t-dependence of the GPDs. The data on A_{UT}^{\sin \phi \cos \phi} indicates that the u and d quarks carry only a small fraction of the proton total angular momentum.Comment: 33 pages, 11 figure

    Unbiased Comparative Evaluation of Ranking Functions

    Full text link
    Eliciting relevance judgments for ranking evaluation is labor-intensive and costly, motivating careful selection of which documents to judge. Unlike traditional approaches that make this selection deterministically, probabilistic sampling has shown intriguing promise since it enables the design of estimators that are provably unbiased even when reusing data with missing judgments. In this paper, we first unify and extend these sampling approaches by viewing the evaluation problem as a Monte Carlo estimation task that applies to a large number of common IR metrics. Drawing on the theoretical clarity that this view offers, we tackle three practical evaluation scenarios: comparing two systems, comparing kk systems against a baseline, and ranking kk systems. For each scenario, we derive an estimator and a variance-optimizing sampling distribution while retaining the strengths of sampling-based evaluation, including unbiasedness, reusability despite missing data, and ease of use in practice. In addition to the theoretical contribution, we empirically evaluate our methods against previously used sampling heuristics and find that they generally cut the number of required relevance judgments at least in half.Comment: Under review; 10 page

    Pump-probe differencing technique for cavity-enhanced, noise-canceling saturation laser spectroscopy

    Full text link
    We present an experimental technique enabling mechanical-noise free, cavity-enhanced frequency measurements of an atomic transition and its hyperfine structure. We employ the 532nm frequency doubled output from a Nd:YAG laser and an iodine vapour cell. The cell is placed in a traveling-wave Fabry-Perot interferometer (FPI) with counter-propagating pump and probe beams. The FPI is locked using the Pound-Drever-Hall (PDH) technique. Mechanical noise is rejected by differencing pump and probe signals. In addition, this differenced error signal gives a sensitive measure of differential non-linearity within the FPI.Comment: 3 pages, 5 figures, submitted to Optics Letter
    corecore