5,051 research outputs found

    A scheme for tunable quantum phase gate and effective preparation of graph-state entanglement

    Full text link
    A scheme is presented for realizing a quantum phase gate with three-level atoms, solid-state qubits--often called artificial atoms, or ions that share a quantum data bus such as a single mode field in cavity QED system or a collective vibrational state of trapped ions. In this scheme, the conditional phase shift is tunable and controllable via the total effective interaction time. Furthermore, we show that the method can be used for effective preparation of graph-state entanglement, which are important resources for quantum computation, quantum error correction, studies of multiparticle entanglement, fundamental tests of non-locality and decoherence.Comment: 7 pages, 5 figure

    Ultrafast pump-probe spectroscopic signatures of superconducting and pseudogap phases in YBa2Cu3O7-{\delta} films

    Full text link
    Femtosecond pump-probe spectroscopy is applied to identify transient optical signatures of phase transitions in optimally doped YBa2Cu3O7-{\delta} films. To elucidate the dynamics of superconducting and pseudogap phases, the slow thermal component is removed from the time-domain traces of photo-induced reflectivity in a high-flux regime with low frequency pulse rate. The rescaled data exhibit distinct signatures of the phase separation with abrupt changes at the onsets of TSC and TPG in excellent agreement with transport data. Compared to the superconducting phase, the response of the pseudogap phase is characterized by the strongly reduced reflectivity change accompanied by a faster recovery time.Comment: 14 pages, 3 figure

    Temperature Effects on the Unsaturated Permeability of the Densely Compacted GMZ01 Bentonite under Confined Conditions

    Get PDF
    International audienceIn this study, temperature controlled soil-water retention tests and unsaturated hydraulic conductivity tests for densely compacted Gaomiaozi bentonite - GMZ01 (dry density of 1.70 Mg/m3) were performed under confined conditions. Relevant soil-water retention curves (SWRCs) and unsaturated hydraulic conductivities of GMZ01 at temperatures of 40°C and 60°C were obtained. Based on these results as well as the previously obtained results at 20°C, the influence of temperature on water-retention properties and unsaturated hydraulic conductivity of the densely compacted Gaomiaozi bentonite were investigated. It was observed that: (i) water retention capacity decreases as temperature increases, and the influence of temperature depends on suction; (ii) for all the temperatures tested, the unsaturated hydraulic conductivity decreases slightly in the initial stage of hydration; the value of the hydraulic conductivity becomes constant as hydration progresses and finally, the permeability increases rapidly with suction decreases as saturation is approached; (iii) under confined conditions, the hydraulic conductivity increases as temperature increases, at a decreasing rate with temperature rise. It was also observed that the influence of temperature on the hydraulic conductivity is quite suction-dependent. At high suctions (s > 60 MPa), the temperature effect is mainly due to its influence on water viscosity; by contrast, in the range of low suctions (s < 60 MPa), the temperature effect is related to both the water viscosity and the macro-pores closing phenomenon that is supposed to be temperature dependent

    Accurate simulation of ice and snow runoff for the mountainous terrain of the Kunlun Mountains, China

    Get PDF
    While mountain runoff provides great potential for the development and life quality of downstream populations, it also frequently causes seasonal disasters. The accurate modeling of hydrological processes in mountainous areas, as well as the amount of meltwater from ice and snow, is of great significance for the local sustainable development, hydropower regulations, and disaster prevention. In this study, an improved model, the Soil Water Assessment Tool with added ice-melt module (SWATAI) was developed based on the Soil Water Assessment Tool (SWAT), a semi-distributed hydrological model, to simulate ice and snow runoff. A temperature condition used to determine precipitation types has been added in the SWATAI model, along with an elevation threshold and an accumulative daily temperature threshold for ice melt, making it more consistent with the runoff process of ice and snow. As a supplementary reference, the comparison between the normalized difference vegetation index (NDVI) and the quantity of meltwater were conducted to verify the simulation results and assess the impact of meltwater on the ecology. Through these modifications, the accuracy of the daily flow simulation results has been considerably improved, and the contribution rate of ice and snow melt to the river discharge calculated by the model increased by 18.73%. The simulation comparison of the flooding process revealed that the accuracy of the simulated peak flood value by the SWATAI was 77.65% higher than that of the SWAT, and the temporal accuracy was 82.93% higher. The correlation between the meltwater calculated by the SWATAI and the NDVI has also improved significantly. This improved model could simulate the flooding processes with high temporal resolution in alpine regions. The simulation results could provide technical support for economic benefits and reasonable reference for flood prevention

    An Experimental Study of the Water Transfer Through Confined Compacted GMZ Bentonite

    Get PDF
    International audienceGMZ bentonite has been considered as a possible material for engineered barrier in the Chinese program of nuclear waste disposal at great depth. In the present work, the hydraulic conductivity of this bentonite was determined by simultaneous profile method. A specific infiltration cell equipped with five resistive relative humidity probes was designed for this purpose. The water retention properties were studied under both confined and unconfined conditions; the results shows that at high suctions (> 4 MPa) the water retention capacity is independent of the confining condition, and by contrast, at low suctions (< 4MPa) the confined condition resulted in significant low water retention. Furthermore, the microstructure was investigated at Mercury Intrusion Porosimetry (MIP) and Environmental Scanning Electron Microscope (ESEM) in different states: on oven-dried powder, bentonite slurry, as-compacted and wetted samples. It has been observed that the soil powder is constituted of aggregates of various sizes; this aggregates are destroyed by fully saturation at a water content equal to the liquid limit; compaction at the initial water content of 11-12% and a dry density of 1.7 – 1.75 Mg/m3 led to a microstructure characterized by an dense assembly of relatively well preserved aggregates; saturation of the compacted sample under constant volume condition defined a non-homogeneous microstructure with the presence of well preserved aggregates. This non-homogeneous microstructure would be due to the non uniform distribution of the generated swelling pressure within the soil sample upon wetting. The hydraulic conductivity determined has been found decreasing firstly and then increasing with suction decrease from the initial value of about 80 MPa to zero; the decrease can be attributed to the large pore clogging due to soft gel creation by exfoliation process, as observed at ESEM

    Entanglement oscillation and survival induced by non-Markovian decoherence dynamics of entangled squeezed-state

    Full text link
    We study the exact decoherence dynamics of the entangled squeezed state of two single-mode optical fields interacting with two independent and uncorrelated environments. We analyze in detail the non-Markovian effects on the entanglement evolution of the initially entangled squeezed state for different environmental correlation time scales. We find that the environments have dual actions on the system: backaction and dissipation. In mparticular, when the environmental correlation time scale is comparable to the time scale for significant change in the system, the backaction would counteract the dissipative effect. Interestingly, this results in the survival of some residual entanglement in the final steady state.Comment: 6 pages, 3 figure

    Translational investigation and treatment of neuropathic pain

    Get PDF
    Neuropathic pain develops from a lesion or disease affecting the somatosensory system. Translational investigations of neuropathic pain by using different animal models reveal that peripheral sensitization, spinal and cortical plasticity may play critical roles in neuropathic pain. Furthermore, descending facilitatory or excitatory modulation may also act to enhance chronic pain. Current clinical therapy for neuropathic pain includes the use of pharmacological and nonpharmacological (psychological, physical, and surgical treatment) methods. However, there is substantial need to better medicine for treating neuropathic pain. Future translational researchers and clinicians will greatly facilitate the development of novel drugs for treating chronic pain including neuropathic pain
    corecore