10,707 research outputs found

    On semi-supervised estimation using exponential tilt mixture models

    Full text link
    Consider a semi-supervised setting with a labeled dataset of binary responses and predictors and an unlabeled dataset with only the predictors. Logistic regression is equivalent to an exponential tilt model in the labeled population. For semi-supervised estimation, we develop further analysis and understanding of a statistical approach using exponential tilt mixture (ETM) models and maximum nonparametric likelihood estimation, while allowing that the class proportions may differ between the unlabeled and labeled data. We derive asymptotic properties of ETM-based estimation and demonstrate improved efficiency over supervised logistic regression in a random sampling setup and an outcome-stratified sampling setup previously used. Moreover, we reconcile such efficiency improvement with the existing semiparametric efficiency theory when the class proportions in the unlabeled and labeled data are restricted to be the same. We also provide a simulation study to numerically illustrate our theoretical findings

    Multi Task Consistency Guided Source-Free Test-Time Domain Adaptation Medical Image Segmentation

    Full text link
    Source-free test-time adaptation for medical image segmentation aims to enhance the adaptability of segmentation models to diverse and previously unseen test sets of the target domain, which contributes to the generalizability and robustness of medical image segmentation models without access to the source domain. Ensuring consistency between target edges and paired inputs is crucial for test-time adaptation. To improve the performance of test-time domain adaptation, we propose a multi task consistency guided source-free test-time domain adaptation medical image segmentation method which ensures the consistency of the local boundary predictions and the global prototype representation. Specifically, we introduce a local boundary consistency constraint method that explores the relationship between tissue region segmentation and tissue boundary localization tasks. Additionally, we propose a global feature consistency constraint toto enhance the intra-class compactness. We conduct extensive experiments on the segmentation of benchmark fundus images. Compared to prediction directly by the source domain model, the segmentation Dice score is improved by 6.27\% and 0.96\% in RIM-ONE-r3 and Drishti GS datasets, respectively. Additionally, the results of experiments demonstrate that our proposed method outperforms existing competitive domain adaptation segmentation algorithms.Comment: 31 pages,7 figure

    Solving optimal power flow problems via a constrained many-objective co-evolutionary algorithm

    Get PDF
    The optimal power flow problem in power systems is characterized by a number of complex objectives and constraints, which aim to optimize the total fuel cost, emissions, active power loss, voltage magnitude deviation, and other metrics simultaneously. These conflicting objectives and strict constraints challenge existing optimizers in balancing between active power and reactive power, along with good trade-offs among many metrics. To address these difficulties, this paper develops a co-evolutionary algorithm to solve the constrained many-objective optimization problem of optimal power flow, which evolves three populations with different selection strategies. These populations are evolved towards different parts of the huge objective space divided by large infeasible regions, and the cooperation between them renders assistance to the search for feasible and Pareto-optimal solutions. According to the experimental results on benchmark problems and the IEEE 30-bus, IEEE 57-bus, and IEEE 118-bus systems, the proposed algorithm is superior over peer algorithms in solving constrained many-objective optimization problems, especially the optimal power flow problems
    • …
    corecore