12 research outputs found

    Metabolism and pharmacokinetics of a potent N -acylindole antagonist of the OXE receptor for the eosinophil chemoattractant 5-oxo-6,8,11,14-eicosatetraenoic acid (5-oxo-ETE) in rats and monkeys

    Get PDF
    We previously identified the indole 264 as a potent in vitro antagonist of the human OXE receptor that mediates the actions of the powerful eosinophil chemoattractant 5-oxo-ETE. No antagonists of this receptor are currently commercially available or are being tested in clinical studies. The lack of a rodent ortholog of the OXE receptor has hampered progress in this area because of the unavailability of commonly used mouse or rat animal models. In the present study, we examined the feasibility of using the cynomolgus monkey as an animal model to investigate the efficacy of orally administered 264 in future in vivo studies. We first confirmed that 264 is active in monkeys by showing that it is a potent inhibitor of 5-oxo-ETE-induced actin polymerization and chemotaxis in granulocytes. The major microsomal metabolites of 264 were identified by cochromatography with authentic chemically synthesized standards and LC-MS/MS as its ω2-hydroxy and ω2-oxo derivatives, formed by ω2-oxidation of its hexyl side chain. Small amounts of ω1-oxidation products were also identified. None of these metabolites have substantial antagonist potency. High levels of 264 appeared rapidly in the blood following oral administration to both rats and monkeys, and declined to low levels by 24 h. As with microsomes, its major plasma metabolites in monkeys were ω2-oxidation products. We conclude that the monkey is a suitable animal model to investigate potential therapeutic effects of 264. This, or a related compound with diminished susceptibility to ω2-oxidation, could be a useful therapeutic agent in eosinophilic disorders such as asthma

    Inhibition of allergen‐induced dermal eosinophilia by an oxoeicosanoid receptor antagonist in non‐human primates

    No full text
    Background and purpose5-Oxo-6,8,11,14-eicosatetraenoic acid (5-oxo-ETE), acting via the OXE receptor, is unique among 5-lipoxygenase products in its ability to directly induce human eosinophil migration, suggesting its involvement in eosinophilic diseases. To address this hypothesis, we synthesized selective indole-based OXE receptor antagonists. Because rodents lack an OXE receptor orthologue, we sought to determine whether these antagonists could attenuate allergen-induced skin eosinophilia in sensitized monkeys.Experimental approachIn a pilot study, cynomolgus monkeys with environmentally acquired sensitivity to Ascaris suum were treated orally with the "first-generation" OXE antagonist 230 prior to intradermal injection of 5-oxo-ETE or Ascaris extract. Eosinophils were evaluated in punch biopsy samples taken 6 or 24 hr later. We subsequently treated captive-bred rhesus monkeys sensitized to house dust mite (HDM) allergen with a more recently developed OXE antagonist, S-Y048, and evaluated its effects on dermal eosinophilia induced by either 5-oxo-ETE or HDM.Key resultsIn a pilot experiment, both 5-oxo-ETE and Ascaris extract induced dermal eosinophilia in cynomolgus monkeys, which appeared to be reduced by 230. Subsequently, we found that the related OXE antagonist S-Y048 is a highly potent inhibitor of 5-oxo-ETE-induced activation of rhesus monkey eosinophils in vitro and has a half-life in plasma of about 6 hr after oral administration. S-Y048 significantly inhibited eosinophil infiltration into the skin in response to both intradermally administered 5-oxo-ETE and HDM.Conclusions and implications5-Oxo-ETE may play an important role in allergen-induced eosinophilia. Blocking its effects with S-Y048 may provide a novel therapeutic approach for eosinophilic diseases

    Targeting the OXE receptor with a selective antagonist inhibits allergen‐induced pulmonary inflammation in non‐human primates

    No full text
    Background and purposeThe 5-lipoxygenase product, 5-oxo-ETE (5-oxo-6,8,11,14-eicosatetraenoic acid), is a potent chemoattractant for eosinophils and neutrophils. However, little is known about its pathophysiological role because of the lack of a rodent ortholog of the oxoeicosanoid (OXE) receptor. The present study aimed to determine whether the selective OXE receptor antagonist S-Y048 can inhibit allergen-induced pulmonary inflammation in a monkey model of asthma.Experimental approachMonkeys sensitized to house dust mite antigen (HDM) were treated with either vehicle or S-Y048 prior to challenge with aerosolized HDM, and bronchoalveolar (BAL) fluid was collected 24 h later. After 6 weeks, animals that had initially been treated with vehicle received S-Y048 and vice versa for animals initially treated with S-Y048. Eosinophils and neutrophils in BAL and lung tissue samples were evaluated, as well as mucus-containing cells in bronchi.Key resultsHDM significantly increased the numbers of eosinophils, neutrophils, and macrophages in BAL fluid 24 h after challenge. These responses were all significantly inhibited by S-Y048, which also reduced the numbers of eosinophils and neutrophils in lung tissue 24 h after challenge with HDM. S-Y048 also significantly reduced the numbers of bronchial epithelial cells staining for mucin and MUC5AC after antigen challenge.Conclusion and implicationsThis study provides the first evidence that 5-oxo-ETE may play an important role in inducing allergen-induced pulmonary inflammation and could also be involved in regulating MUC5AC in goblet cells. OXE receptor antagonists such as S-Y048 may useful therapeutic agents in asthma and other eosinophilic as well as neutrophilic diseases

    Metabolomics reveals a unique CYP3A-mediated C(sp3)-C(sp2) bond cleavage via ipso-addition reaction in drug metabolism

    No full text
    Cytochrome P450-mediated carbon–carbon (C-C) cleavages are unusual, especially for mammalian drug metabolizing enzymes. Revealing the unusual reactions in biological system is very arduous and selectively oxidative C-C cleavage is also a long-standing challenge in chemistry and biology. We herein present a rapid and efficient metabolomic-based approach to uncover human CYP3A-mediated non-polar, unstrained C(sp2)-C(sp3) bond cleavage in the CSF-1R inhibitor pexidartinib. Using synthetic metabolites, 18O2, and H218O, we demonstrate that one unique cleavage is via the ipso-addition reaction. This is the first report of CYP3A-mediated ipso-addition reaction to the 5-alkylated N-protected pyridin-2-amines. We have expanded the range of substrates undergoing CYP3A-mediated ipso-addition reactions beyond para-phenols to include N-protected alkylated pyridine-2-amines. Our metabolomic-based approach also successfully discovered the CYP3A-mediated C(sp2)-C(sp3) bond cleavage of PEX analogs as well as the antidepressant nefazodone. This work established an efficient strategy to identify the uncommon reactions in drug metabolism using a metabolomic strategy. More importantly, the environmentally friendly conditions of CYP3A-catalyzed unusual ispo-addition reactions hold the potential to inspire future exploration of biomimetic P450-reprogramming methods for addressing the challenging task of unactivated C-C bond cleavage in the field

    A shear-thinning, ROS-scavenging hydrogel combined with dental pulp stem cells promotes spinal cord repair by inhibiting ferroptosis

    No full text
    Spinal cord injury (SCI) is a serious clinical disease. Due to the deformability and fragility of the spinal cord, overly rigid hydrogels cannot be used to treat SCI. Hence, we used TPA and Laponite to develop a hydrogel with shear-thinning ability. This hydrogel exhibits good deformation, allowing it to match the physical properties of the spinal cord; additionally, this hydrogel scavenges ROS well, allowing it to inhibit the lipid peroxidation caused by ferroptosis. According to the in vivo studies, the TPA@Laponite hydrogel could synergistically inhibit ferroptosis by improving vascular function and regulating iron metabolism. In addition, dental pulp stem cells (DPSCs) were introduced into the TPA@Laponite hydrogel to regulate the ratios of excitatory and inhibitory synapses. It was shown that this combination biomaterial effectively reduced muscle spasms and promoted recovery from SCI

    Two Potent OXE‑R Antagonists: Assignment of Stereochemistry

    No full text
    5-Oxo-6,8,11,14-eicosatetraenoic acid (5-oxo-ETE) is formed by the oxidation of 5-hydroxy-6<i>E</i>,8<i>Z</i>,11<i>Z</i>,14<i>Z</i>-eicosatetraenoic acid (5-HETE), which is a major metabolite of enzymatic oxidation of arachidonic acid (AA). 5-Oxo-ETE is the most potent lipid chemoattractant for human eosinophils. Its actions are mediated by the selective OXE receptor, which is therefore an attractive target in eosinophilic diseases such as allergic rhinitis and asthma. Recently, we have reported two excellent OXE receptor antagonists that have IC<sub>50</sub> values at low nanomolar concentrations. Each of these antagonists has a chiral center, and the isolation of the individual enantiomers by chiral high-performance liquid chromatography (HPLC) revealed that in each case one enantiomer is over 300 times more potent than the other. To unambiguously assign the stereochemistry of these enantiomers and to provide access to larger amounts of the active compounds for biological testing, we report here their total synthesis

    Novel Highly Potent and Metabolically Resistant Oxoeicosanoid (OXE) Receptor Antagonists That Block the Actions of the Granulocyte Chemoattractant 5‑Oxo-6,8,11,14-Eicosatetraenoic Acid (5-oxo-ETE)

    No full text
    5-Oxo-6,8,11,14-eicosatetraenoic acid (5-oxo-ETE) is a potent lipid mediator that induces tissue eosinophilia via the selective OXE receptor (OXE-R), which is an attractive therapeutic target in eosinophilic diseases. We previously identified indole OXE-R antagonists that block 5-oxo-ETE-induced primate eosinophil activation. Although these compounds possess good oral absorption, their plasma levels decline rapidly due to extensive oxidation of their hexyl side chain. We have now succeeded in dramatically increasing antagonist potency and resistance to metabolism by replacing the hexyl group with phenylpentyl or phenylhexyl side chains. Compared with our previous lead compound <b><i>S</i>-230</b>, our most potent antagonist, <b><i>S</i>-C025</b>, has an IC<sub>50</sub> (120 pM) over 80 times lower and a substantially longer plasma half-life. A single major metabolite, which retains antagonist activity (IC<sub>50</sub>, 690 pM) and has a prolonged lifetime in plasma was observed. These new highly potent OXE-R antagonists may provide a novel strategy for the treatment of eosinophilic disorders like asthma

    Pharmacokinetics and Metabolism of Selective Oxoeicosanoid (OXE) Receptor Antagonists and Their Effects on 5‑Oxo-6,8,11,14-eicosatetraenoic Acid (5-Oxo-ETE)-Induced Granulocyte Activation in Monkeys

    No full text
    The potent eosinophil chemoattractant 5-oxo-6,8,11,14-eicosatetraenoic acid (5-oxo-ETE) is a 5-lipoxygenase product that acts via the selective OXE receptor, which is present in many species, but not rodents. We previously reported that the indole <b>230</b> is a potent human OXE receptor antagonist. The objective of the present study was to determine whether the monkey would be a suitable animal model to investigate its pharmaceutical potential. We found that monkey leukocytes synthesize and respond to 5-oxo-ETE and that <b>230</b> is a potent antagonist of the OXE receptor in monkey eosinophils. Pharmacokinetic studies revealed that <b>230</b> appears rapidly in the blood following oral administration. Using chemically synthesized standards, we identified the major microsomal and plasma metabolites of <b>230</b> as products of ω2-hydroxylation of the alkyl side chain. These studies demonstrate that the monkey is a promising animal model to investigate the drug potential of OXE receptor antagonists
    corecore