44 research outputs found

    Molecular Structure of Selected Tuber and Root Starches and Effect of Amylopectin Structure on Their Physical Properties

    Get PDF
    The objectives of this study were to characterize starches isolated from potato, canna, fern, and kudzu, grown in Hangzhou, China, for potential food and nonfood applications and to gain understandings of the structures and properties of tuber and root starches. Potato and canna starches with B-type X-ray patterns had larger proportions of amylopectin (AP) long branch chains (DP g37) than did fern (C-type) and kudzu (CA-type) starches. The analysis of Naegeli dextrins suggested that fern and kudzu starches had more branch points, R-(1,6)-D-glycosidic linkages, located within the double-helical crystalline lamella than did the B-type starches. Dispersed molecular densities of the C- and CA-type APs (11.6-13.5 g/mol/nm3) were significantly larger than those of the B-type APs (1.4-6.1 g/mol/nm3) in dilute solutions. The larger proportion of the long AP branch chains in the B-type starch granules resulted in greater gelatinization enthalpy changes (ΔH). Retrograded kudzu starch, which had the shortest average chain length (DP 25.1), melted at a lower temperature (37.9 °C) than the others. Higher peak viscosities (550-749 RVU at 8%, dsb) of potato starches were attributed to the greater concentrations of phosphate monoesters, longer branch chains, and larger granule sizes compared with other tuber and root starches

    Concentration maxima of methane in the bottom waters over the Chukchi Sea shelf: implication of its biogenic source

    Get PDF
    Knowledge about the distribution of CH4 remains insufficient due to the scarcity of data in the Arctic shelves. We conducted shipboard observations over the Chukchi Sea shelf (CSS) in the western Arctic Ocean in September 2012 to obtain the distribution and source characteristics of dissolved CH4 in seawater. The oceanographic data indicated that a salinity gradient generated a pronounced pycnocline at depths of 20–30 m. The vertical diffusion of biogenic elements was restricted, and these elements were trapped in the bottom waters. Furthermore, high CH4 concentrations were measured below the pycnocline, and low CH4 concentrations were observed in the surface waters. The maximum concentrations of nutrients simultaneously occurred in the dense and cold bottom waters, and significant correlations were observed between CH4 and 2 3 SiO , 3 4 PO , 2 NO , and 4 NH (p < 0.01, n= 44). These results suggest that the production of CH4 in the CSS has a similar trend as that of nutrient regeneration and is probably associated with the degradation of organic matter. The high primary productivity and high concentration of organic matter support the formation of biogenic CH4 in the CSS and the subsequent release of CH4 to the water column

    The genome and gene editing system of sea barleygrass provide a novel platform for cereal domestication and stress tolerance studies

    Get PDF
    The tribe Triticeae provides important staple cereal crops and contains elite wild species with wide genetic diversity and high tolerance to abiotic stresses. Sea barleygrass (Hordeum marinum Huds.), a wild Triticeae species, thrives in saline marshlands and is well known for its high tolerance to salinity and waterlogging. Here, a 3.82-Gb high-quality reference genome of sea barleygrass is assembled de novo, with 3.69 Gb (96.8%) of its sequences anchored onto seven chromosomes. In total, 41 045 high-confidence (HC) genes are annotated by homology, de novo prediction, and transcriptome analysis. Phylogenetics, non-synonymous/synonymous mutation ratios (Ka/Ks), and transcriptomic and functional analyses provide genetic evidence for the divergence in morphology and salt tolerance among sea barleygrass, barley, and wheat. The large variation in post-domestication genes (e.g. IPA1 and MOC1) may cause interspecies differences in plant morphology. The extremely high salt tolerance of sea barleygrass is mainly attributed to low Na+ uptake and root-to-shoot translocation, which are mainly controlled by SOS1, HKT, and NHX transporters. Agrobacterium-mediated transformation and CRISPR/Cas9-mediated gene editing systems were developed for sea barleygrass to promote its utilization for exploration and functional studies of hub genes and for the genetic improvement of cereal crops

    Suppression of renal cell carcinoma growth in vivo by forced expression of vascular endothelial growth inhibitor

    Get PDF
    Vascular endothelial growth inhibitor (VEGI) has been associated with tumor-related vasculature in certain malignancies. However, its implication in renal cell carcinoma (RCC), an angiogenesis-dependent tumor, remains unknown. In the present study, we investigated the role played by VEGI in RCC. The expression of VEGI was examined in human renal tissue and RCC cell lines using immunohistochemical staining and RT-PCR, respectively. The biological impact of modifying the expression of VEGI in RCC cells was evaluated using in vitro and in vivo models. We show that VEGI mRNA is expressed in a wide variety of human RCC cell lines, all of normal renal and most of RCC tissue specimens. VEGI protein expression was observed in normal renal tubular epithelial cells, but was decreased or absent in RCC specimens, particularly in tumors with high grade. Moreover, forced expression of VEGI led to an inhibition of vascular endothelial tube formation, decrease in the motility and adhesion of RCC cells in vitro. Interestingly, forced expression of VEGI had no bearing on growth, apoptosis and invasive capacity of RCC cells. However, tumor growth was reduced in xenograft models. Immunohistochemical staining showed that microvessel density decreased in VEGI forced expression xenograft tumor samples. Taken together, our findings showed that the expression of VEGI is decreased in RCC, particularly in tumors with higher grade. Together with its inhibitory effect on cellular motility, adhesion, vascular endothelial tube formation and tumor growth in vivo, this suggests that VEGI functions mainly through inhibition of angiogenesis and is a negative regulator of aggressiveness during the development and progression of RCC

    Improving Initial Guess for the Iterative Solution of Linear Equation Systems in Incompressible Flow

    No full text
    The pressure equation, generated while solving the incompressible Navier&ndash;Stokes equations with the segregated iterative algorithm such as PISO, produces a series of linear equation systems as the time step advances. In this paper, we target at accelerating the iterative solution of these linear systems by improving their initial guesses. We propose a weighted group extrapolation method to obtain a superior initial guess instead of a general one, the solution of the previous linear equation system. In this method, the previous solutions that are used to extrapolate the predicted solutions are carefully organized to address the oscillatory solution on each grid. The proposed method uses a weighted average of the predicted solutions as the new initial guess to avoid over extrapolating. Three numerical test results show that the proposed method can accelerate the iterative solution of most linear equation systems and reduce the simulation time up to 61.3%
    corecore