607 research outputs found

    Education, education, education:now more than ever?

    Get PDF
    A whole generation of young scientists and medical doctors enthusiastically entered the field of assisted reproduction and infertility treatment after the birth of the first in vitro fertilized (IVF) child Louise Brown in 1978. A new paradigm for treating infertility opened and created unprecedented room for research and development. Indeed, the first years of the IVF era was characterised by a huge research effort understanding follicular development including ovarian stimulation and developing robust methods in the laboratory. Thus, many young clinicians and scientists found a significant career opportunity in the field. Their efforts and successes resulted in a logarithmic increase in activity. The SART register in USA have reported that the US had around 25 clinics performing a few thousands cycles annually in 1985, which today has risen to a little less than 400 clinics doing more than 200,000 cycles (SART, 2015). It is estimated that currently over 5 million IVF children have been born worldwide contributing significantly to the next generation (Fauser et al, 2013). Several of the clinicians and scientists who entered the field in the 1980’ties have been leading figures in IVF treatments but now 30-40 years later they have or are about to retire. This implies that the profession faces a massive transgenerational transition. This in itself calls for a strong educational effort of the new and coming generations, but a number of other factors also highlight the need for continued and expanded education in the field of reproduction

    Effect of first line cancer treatment on the ovarian reserve and follicular density in girls under the age of 18 years

    Get PDF
    The Child Cancer Foundation in Denmark, The Novo Nordisk Foundation and the EU interregional project ReproHigh/ReproUnion are thanked for having funded this study.Objective: To study the impact of first-line antineoplastic treatment on the ovarian reserve in young girls returning for ovarian tissue cryopreservation (OTC) in connection with a relapse. Design: Retrospective case-control study. Setting: University hospitals. Patients: Sixty-three girls under the age of 18 years who underwent OTC before (group 1: 31 patients) and after (group 2: 32 patients) their initial cancer treatment. Intervention(s): None. Main Outcome Measure(s): Follicular densities (follicles/mm3) measured from an ovarian cortical biopsy before OTC. The ovarian volume (mL) of entire ovaries excised for OTC was also monitored. Result(s):There was no statistically significant difference in the mean age or follicular density between groups 1 and 2 (334 ± 476/mm3 vs. 327 ± 756/mm3). In contrast, the ovarian volume and total number of ovarian cortex chips cryopreserved were statistically significantly lower in patients who received gonadotoxic treatment before OTC (mean ± standard deviation [SD]: ovarian volume, 5.3 ± 3.1 mL vs. 2.9 ± 2.1 mL, respectively; number of cortex chips: 21.3 ± 8.1 vs. 15.2 ± 7.1, respectively). The reduction in the estimated ovarian reserve ranged from 10% to 20% in children to around 30% in adolescent girls (>10 years). Conclusion(s): Girls under the age of 10 tolerate a gonadotoxic insult better than adolescents, who may experience up to a 30% reduction in the ovarian reserve via first-line gonadotoxic treatment, which at present is considered to have little effect on the follicle pool. This information will improve counseling of young female cancer patients in deciding whether to undergo fertility preservation treatment.PostprintPeer reviewe

    Comparative pharmacology of a new recombinant FSH expressed by a human cell line

    Get PDF
    Recombinant FSH proteins are important therapeutic agents for the treatment of infertility, including follitropin alfa expressed in Chinese Hamster Ovary (CHO) cells and, more recently, follitropin delta expressed in the human cell line PER.C6. These recombinant FSH proteins have distinct glycosylation, and have distinct pharmacokinetic and pharmacodynamic profiles in women. Comparative experiments demonstrated that follitropin delta and follitropin alfa displayed the same in vitro potency at the human FSH receptor, but varied in their pharmacokinetics in mouse and rat. While follitropin delta clearance from serum depended in part on the hepatic asialoglycoprotein receptor (ASGPR), follitropin alfa clearance was unaffected by ASGPR inhibition in rat or genetic ablation in mice. The distinct properties of follitropin delta and follitropin alfa are likely to contribute to the differing pharmacokinetic and pharmacodynamic profiles observed in women and to influence their efficacy in therapeutic protocols for the treatment of infertility

    Testis tissue cryopreservation may be considered in boys with cryptorchidism

    Get PDF
    This study assessed the feasibility of testis tissue cryopreservation (TTC) for fertility preservation in prepubescent boys with cryptorchidism. From January 2014 to December 2022, the University Hospital of Copenhagen (Rigshospitalet, Copenhagen, Denmark) implemented TTC for 56 boys with cryptorchidism to preserve their reproductive potential. Testis tissue samples were collected during orchiopexy (32 cases) or at subsequent follow-up procedures (24 cases), necessitated by an increased risk of infertility as indicated by hormonal assessments and/or findings from initial surgical biopsies. Testis samples were procured for TTC and pathological analysis. The cohort had an average age of 1.3 (range: 0.3-3.8) years at the time of orchiopexy, with 91.1% presenting bilateral cryptorchidism. The study revealed a median germ cell count of 0.39 (range: 0-2.88) per seminiferous tubule, with germ cells detected in 98.0% of the bilateral biopsies and 100% of the unilateral, indicating a substantial potential for fertility in these immature tissues. A dark spermatogonia (Ad) was detected in 37 out of 56 patients evaluated, with a median Ad spermatogonia count of 0.027 (range: 0.002-0.158) per seminiferous tubule. A total of 30.2% of the samples lacked Ad spermatogonia, indicative of potential gonadotrophin insufficiency. The median hormone levels measured were as follows: follicle-stimulating hormone (FSH) at 0.69 (range: 0.16-2.5) U l -1, luteinizing hormone (LH) at 0.21 (range: 0.05-3.86) U l -1, and inhibin B at 126 (range: 17-300) pg ml -1. Despite early orchiopexy, 20%-25% of boys with cryptorchidism remain at risk for future infertility, substantiating the necessity of TTC as a precaution. The study highlights the need for refined predictive techniques to identify boys at higher risk of future infertility.</p

    Expression and Role of INSL3 in the Fetal Testis

    Get PDF
    Insulin-like peptide 3 (INSL3) is a small peptide hormone of the insulin-relaxin family which is produced and secreted by the fetal Leydig cells in the testes only. It appears to be undetectable in female fetuses. In the human fetus INSL3 synthesis begins immediately following gonadal sex determination at weeks 7 to 8 post coitum and the peptide can be detected in amniotic fluid 1 to 2 weeks later. INSL3 acts through a unique G-protein-coupled receptor, called RelaXin-like Family Peptide receptor 2 (RXFP2), which is expressed by the mesenchymal cells of the gubernacular ligament linking the testes to the inguinal wall. The role of INSL3 in the male fetus is to cause a thickening of the gubernaculum which then retains the testes in the inguinal region, while the remainder of the abdominal organs grow away in an antero-dorsal direction. This represents the first phase of testis descent and is followed later in pregnancy by the second inguino-scrotal phase whereby the testes pass into the scrotum through the inguinal canal. INSL3 acts as a significant biomarker for Leydig cell differentiation in the fetus and may be reduced by maternal exposure to endocrine disrupting chemicals, such as xenoestrogens or phthalates, leading to cryptorchidism. INSL3 may have other roles within the fetus, but as a Leydig cell biomarker its reduction acts also as a surrogate for anti-androgen action

    The Common Follicle-Stimulating Hormone Receptor (FSHR) Promoter Polymorphism FSHR -29G &gt; A Affects Androgen Production in Normal Human Small Antral Follicles

    Get PDF
    Follicle-stimulating hormone receptors (FSHRs) are almost exclusively expressed on granulosa cells, and FSH action is probably most clearly reflected in intrafollicular hormone milieu of antral follicles. Little is known about the possible effects of the common single nucleotide polymorphism (SNP) FSHR −29G &gt; A (rs1394205) on hormonal conditions in humsan small antral follicles (hSAFs) obtained from women in the natural menstrual cycle. This study investigated the follicle fluid (FF) concentrations of anti-Müllerian hormone, estradiol, progesterone, androstenedione, and testosterone in hSAF in relation to the different genotypes of FSHR −29G &gt; A. FF from 362 follicles was collected in 95 women undergoing fertility preservation, who did not suffer from a disease that directly affected ovarian function. The testosterone levels of the minor A/A genotype were significantly increased compared to the A/G and the G/G genotype. Furthermore, significantly reduced androstenedione levels were observed for the G/G genotype, as compared to the A/G genotype, while the other hormones did not show statistical significant differences. In conclusion, the androgen levels of hSAF were significantly elevated in the minor SNP genotype in the FSHR promoter polymorphism FSHR −29G &gt; A
    corecore