591 research outputs found

    Probing the nanohydrodynamics at liquid-solid interfaces using thermal motion

    Full text link
    We report on a new method to characterize nano-hydrodynamic properties at the liquid/solid interface relying solely on the measurement of the thermal motion of confined colloids. Using Fluorescence Correlation Spectroscopy (FCS) to probe the diffusion of the colloidal tracers, this optical technique --equivalent in spirit to the microrheology technique used for bulk properties-- is able to achieve nanometric resolution on the slip length measurement. It confirms the no-slip boundary condition on wetting surfaces and shows a partial slip b=18 +/- 5 nm on non-wetting ones. Moreover, in the absence of external forcing, we do not find any evidence for large nano-bubble promoted slippage on moderately rough non-wetting surfaces.Comment: 4 pages, 3 figure

    Hydrodynamics within the Electric Double Layer on slipping surfaces

    Full text link
    We show, using extensive Molecular Dynamics simulations, that the dynamics of the electric double layer (EDL) is very much dependent on the wettability of the charged surface on which the EDL develops. For a wetting surface, the dynamics, characterized by the so-called Zeta potential, is mainly controlled by the electric properties of the surface, and our work provides a clear interpretation for the traditionally introduced immobile Stern layer. In contrast, the immobile layer disappears for non-wetting surfaces and the Zeta potential deduced from electrokinetic effects is considerably amplified by the existence of a slippage at the solid substrate.Comment: accepted for publication in Physical Review Letter

    Destabilization of a flow focused suspension of magnetotactic bacteria

    Full text link
    Active matter is a new class of material, intrinsically out-of equilibrium with intriguing properties. So far, the recent upsurge of studies has mostly focused on the spontaneous behavior of these systems --in the absence of external constraints or driving--. Yet, many real life systems evolve under constraints, being both submitted to flow and various taxis. In the present work, we demonstrate a new experimental system which opens up the way for quantitative investigations, and discriminating examinations, of the challenging theoretical description of such systems. We explore the behavior of magnetotactic bacteria as a particularly rich and versatile class of driven matter, which behavior can be studied under contrasting and contradicting stimuli. In particular we demonstrate that the competing driving of an orienting magnetic field and hydrodynamic flow lead not only to jetting, but also unveils a new pearling instability. This illustrates new structuring capabilities of driven active matter

    Colloidal motility and pattern formation under rectified diffusiophoresis

    Full text link
    In this letter, we characterize experimentally the diffusiophoretic motion of colloids and lambda- DNA toward higher concentration of solutes, using microfluidic technology to build spatially- and temporally-controlled concentration gradients. We then demonstrate that segregation and spatial patterning of the particles can be achieved from temporal variations of the solute concentration profile. This segregation takes the form of a strong trapping potential, stemming from an osmotically induced rectification mechanism of the solute time-dependent variations. Depending on the spatial and temporal symmetry of the solute signal, localization patterns with various shapes can be achieved. These results highlight the role of solute contrasts in out-of-equilibrium processes occuring in soft matter

    How a "pinch of salt" can tune chaotic mixing of colloidal suspensions

    Full text link
    Efficient mixing of colloids, particles or molecules is a central issue in many processes. It results from the complex interplay between flow deformations and molecular diffusion, which is generally assumed to control the homogenization processes. In this work we demonstrate on the contrary that despite fixed flow and self-diffusion conditions, the chaotic mixing of colloidal suspensions can be either boosted or inhibited by the sole addition of trace amount of salt as a co-mixing species. Indeed, this shows that local saline gradients can trigger a chemically-driven transport phenomenon, diffusiophoresis, which controls the rate and direction of molecular transport far more efficiently than usual Brownian diffusion. A simple model combining the elementary ingredients of chaotic mixing with diffusiophoretic transport of the colloids allows to rationalize our observations and highlights how small-scale out-of-equilibrium transport bridges to mixing at much larger scales in a very effective way. Considering chaotic mixing as a prototypal building block for turbulent mixing, this suggests that these phenomena, occurring whenever the chemical environment is inhomogeneous, might bring interesting perspective from micro-systems up to large-scale situations, with examples ranging from ecosystems to industrial contexts.Comment: Submitte

    Large permeabilities of hourglass nanopores: From hydrodynamics to single file transport

    Get PDF
    In fluid transport across nanopores, there is a fundamental dissipation that arises from the connection between the pore and the macroscopic reservoirs. This entrance effect can hinder the whole transport in certain situations, for short pores and/or highly slipping channels. In this paper, we explore the hydrodynamic permeability of hourglass shape nanopores using molecular dynamics (MD) simulations, with the central pore size ranging from several nanometers down to a few Angstr{\"o}ms. Surprisingly, we find a very good agreement between MD results and continuum hydrodynamic predictions, even for the smallest systems undergoing single file transport of water. An optimum of permeability is found for an opening angle around 5 degree, in agreement with continuum predictions, yielding a permeability five times larger than for a straight nanotube. Moreover, we find that the permeability of hourglass shape nanopores is even larger than single nanopores pierced in a molecular thin graphene sheet. This suggests that designing the geometry of nanopores may help considerably increasing the macroscopic permeability of membranes
    corecore