2 research outputs found

    Hydrogen Cyanamide Causes Reversible G2/M Cell Cycle Arrest Accompanied by Oxidation of the Nucleus and Cytosol

    Get PDF
    Hydrogen cyanamide (HC) has been widely used in horticulture to trigger bud burst following dormancy. Its use has been banned in some countries due to human health concerns, however the search for effective safe alternatives is delayed by lack of knowledge of the mechanism of HC action. Earlier studies demonstrate that HC stimulates the production of reactive oxygen species (ROS) and alters the rate of cell division. However, the relationships between HC effects on ROS, redox (reduction/oxidation) homeostasis and cell division are unknown. This study used Arabidopsis thaliana ((L.) Heynh.) seedlings expressing the redox reporter roGFP2 to measure the oxidation states of the nuclei and cytosol in response to HC treatment. The Cytrap dual cell cycle phase marker system and flow cytometry were used to study associated changes in cell proliferation. HC (1.5 mM) reversibly inhibited root growth during a 24 h treatment. Higher concentrations were not reversible. HC did not synchronise the cell cycle, in contrast to hydroxyurea. Rather, HC caused a gradual accumulation of cells in the G2/M phase and decline of G1/S phase cells, 16 to 24 h post-treatment. This was accompanied by increased oxidation of both the nuclei and cytosol. Taken together, these findings show that HC impairs proliferation of embryonic root meristem cells in a reversible manner through restriction of G2/M transition accompanied by increased cellular oxidation

    Redox changes during the cell cycle in the embryonic root meristem of Arabidopsis thaliana

    Get PDF
    Aims: The aim of this study was to characterize redox changes in the nuclei and cytosol occurring during the mitotic cell cycle in the embryonic roots of germinating Arabidopsis seedlings, and to determine how redox cycling was modified in mutants with a decreased capacity for ascorbate synthesis. Results: Using an in vivo reduction-oxidation (redox) reporter (roGFP2), we show that transient oxidation of the cytosol and the nuclei occurred at G1 in the synchronized dividing cells of the Arabidopsis root apical meristem, with reduction at G2 and mitosis. This redox cycle was absent from low ascorbate mutants in which nuclei were significantly more oxidized than controls. The cell cycle-dependent increase in nuclear size was impaired in the ascorbate-deficient mutants, which had fewer cells per unit area in the root proliferation zone. The transcript profile of the dry seeds and size of the imbibed seeds was strongly influenced by low ascorbate but germination, dormancy release and seed aging characteristics were unaffected. Innovation: These data demonstrate the presence of a redox cycle within the plant cell cycle and that the redox state of the nuclei is an important factor in cell cycle progression. Conclusions: Controlled oxidation is a key feature of the early stages of the plant cell cycle. However, sustained mild oxidation restricts nuclear functions and impairs progression through the cell cycle leading to fewer cells in the root apical meristem
    corecore