330 research outputs found

    A novel autologous plasma based viscosupplementation

    Get PDF

    Anisotropy and periodicity in the density distribution of electrons in a quantum-well

    Full text link
    We use low temperature near-field optical spectroscopy to image the electron density distribution in the plane of a high mobility GaAs quantum well. We find that the electrons are not randomly distributed in the plane, but rather form narrow stripes (width smaller than 150 nm) of higher electron density. The stripes are oriented along the [1-10 ] crystal direction, and are arranged in a quasi-periodic structure. We show that elongated structural mounds, which are intrinsic to molecular beam epitaxy, are responsible for the creation of this electron density texture.Comment: 10 pages, 3 figure

    Near-field spectroscopy of a gated electron gas: a direct evidence for electrons localization

    Full text link
    The near-field photoluminescence of a gated two-dimensional electron gas is measured. We use the negatively charged exciton, formed by binding of an electron to a photo-excited electron-hole pair, as an indicator for the local presence of charge. Large spatial fluctuations in the luminescence intensity of the negatively charged exciton are observed. These fluctuations are shown to be due to electrons localized in the random potential of the remote ionized donors. We use these fluctuations to image the electrons and donors distribution in the plane.Comment: 10 pages, 5 figures, to be published in PR

    Mechanical stress inhibits early stages of endogenous cell migration: A pilot study in an ex vivo osteocho

    Get PDF
    Cell migration has a central role in osteochondral defect repair initiation and biomaterial-mediated regeneration. New advancements to reestablish tissue function include biomaterials and factors promoting cell recruitment, differentiation and tissue integration, but little is known about responses to mechanical stimuli. In the present pilot study, we tested the influence of extrinsic forces in combination with biomaterials releasing chemoattractant signals on cell migration. We used an ex vivo mechanically stimulated osteochondral defect explant filled with fibrin/hyaluronan hydrogel, in presence or absence of platelet-derived growth factor-BB or stromal cell-derived factor 1, to assess endogenous cell recruitment into the wound site. Periodic mechanical stress at early time point negatively influenced cell infiltration compared to unloaded samples, and the implementation of chemokines to increase cell migration was not efficient to overcome this negative effect. The gene expression at 15 days of culture indicated a marked downregulation of matrix metalloproteinase (MMP)13 and MMP3, a decrease of β1 integrin and increased mRNA levels of actin in osteochondral samples exposed to complex load. This work using an ex vivo osteochondral mechanically stimulated advanced platform demonstrated that recurrent mechanical stress at early time points impeded cell migration into the hydrogel, providing a unique opportunity to improve our understanding on management of joint injury

    Enhanced chondrogenic phenotype of primary bovine articular chondrocytes in Fibrin-Hyaluronan hydrogel by multi-axial mechanical loading and FGF18

    Get PDF
    Current treatments for cartilage lesions are often associated with fibrocartilage formation and donor site morbidity. Mechanical and biochemical stimuli play an important role in hyaline cartilage formation. Biocompatible scaffolds capable of transducing mechanical loads and delivering bioactive instructive factors may better support cartilage regeneration. In this study we aimed to test the interplay between mechanical and FGF-18 mediated biochemical signals on the proliferation and differentiation of primary bovine articular chondrocytes embedded in a chondro-conductive Fibrin-Hyaluronan (FB/HA) based hydrogel. Chondrocytes seeded in a Fibrin-HA hydrogel, with or without a chondro-inductive, FGFR3 selective FGF18 variant (FGF-18v) were loaded into a joint-mimicking bioreactor applying controlled, multi-axial movements, simulating the natural movements of articular joints. Samples were evaluated for DNA content, sulphated glycosaminoglycan (sGAG) accumulation, key chondrogenic gene expression markers and histology. Under moderate loading, samples produced particularly significant amounts of sGAG/DNA compared to unloaded controls. Interestingly there was no significant effect of FGF-18v on cartilage gene expression at rest. Following moderate multi-axial loading, FGF-18v upregulated the expression of Aggrecan (ACAN), Cartilage Oligomeric Matrix Protein (COMP), type II collagen (COL2) and Lubricin (PRG4). Moreover, the combination of load and FGF-18v, significantly downregulated Matrix Metalloproteinase-9 (MMP-9) and Matrix Metaloproteinase-13 (MMP-13), two of the most important factors contributing to joint destruction in OA. Biomimetic mechanical signals and FGF-18 may work in concert to support hyaline cartilage regeneration and repair. Statement of significance: Articular cartilage has very limited repair potential and focal cartilage lesions constitute a challenge for current standard clinical procedures. The aim of the present research was to explore novel procedures and constructs, based on biomaterials and biomechanical algorithms that can better mimic joints mechanical and biochemical stimulation to promote regeneration of damaged cartilage. Using a hydrogel-based platform for chondrocyte 3D culture revealed a synergy between mechanical forces and growth factors. Exploring the mechanisms underlying this mechano-biochemical interplay may enhance our understanding of cartilage remodeling and the development of new strategies for cartilage repair and regeneration

    Spin-Atomic Vibration Interaction and Spin-Flip Hamiltonian of a Single Atomic Spin in a Crystal Field

    Full text link
    We derive the spin-atomic vibration interaction VSAV_{\rm SA} and the spin-flip Hamiltonian VSFV_{\rm SF} of a single atomic spin in a crystal field. We here apply the perturbation theory to a model with the spin-orbit interaction and the kinetic and potential energies of electrons. The model also takes into account the difference in vibration displacement between an effective nucleus and electrons, \Delta {{\boldmath r}}. Examining the coefficients of VSAV_{\rm SA} and VSFV_{\rm SF}, we first show that VSAV_{\rm SA} appears for \Delta {{\boldmath r}}\ne0, while VSFV_{\rm SF} is present independently of \Delta {{\boldmath r}}. As an application, we next obtain VSAV_{\rm SA} and VSFV_{\rm SF} of an Fe ion in a crystal field of tetragonal symmetry. It is found that the magnitudes of the coefficients of VSAV_{\rm SA} can be larger than those of the conventional spin-phonon interaction depending on vibration frequency. In addition, transition probabilities per unit time due to VSAV_{\rm SA} and VSFV_{\rm SF} are investigated for the Fe ion with an anisotropy energy of DSZ2-|D|S_Z^2, where DD is an anisotropy constant and SZS_Z is the ZZ component of a spin operator.Comment: 55 pages, 17 figures, to be published in J. Phys. Soc. Jpn. 79 (2010) No. 11, typos correcte

    Theory of neutral and charged exciton scattering with electrons in semiconductor quantum wells

    Full text link
    Electron scattering on both neutral (XX) and charged (XX^-) excitons in quantum wells is studied theoretically. A microscopic model is presented, taking into account both elastic and dissociating scattering. The model is based on calculating the exciton-electron direct and exchange interaction matrix elements, from which we derive the exciton scattering rates. We find that for an electron density of 109cm210^9 {\rm cm}^{-2} in a GaAs QW at T=5KT=5K, the XX^- linewidth due to electron scattering is roughly twice as large as that of the neutral exciton. This reflects both the XX^- larger interaction matrix elements compared with those of XX, and their different dependence on the transferred momentum. Calculated reflection spectra can then be obtained by considering the three electronic excitations of the system, namely, the heavy-hole and light-hole 1S neutral excitons, and the heavy-hole 1S charged exciton, with the appropriate oscillator strengths.Comment: 18 pages, 12 figure

    Expression of Drug Targets in Patients Treated with Sorafenib, Carboplatin and Paclitaxel

    Get PDF
    Introduction: Sorafenib, a multitarget kinase inhibitor, targets members of the mitogen-activated protein kinase (MAPK) pathway and VEGFR kinases. Here we assessed the association between expression of sorafenib targets and biomarkers of taxane sensitivity and response to therapy in pre-treatment tumors from patients enrolled in ECOG 2603, a phase III comparing sorafenib, carboplatin and paclitaxel (SCP) to carboplatin, paclitaxel and placebo (CP). Methods: Using a method of automated quantitative analysis (AQUA) of in situ protein expression, we quantified expression of VEGF-R2, VEGF-R1, VEGF-R3, FGF-R1, PDGF-Rβ, c-Kit, B-Raf, C-Raf, MEK1, ERK1/2, STMN1, MAP2, EB1 and Bcl-2 in pretreatment specimens from 263 patients. Results: An association was found between high FGF-R1 and VEGF-R1 and increased progression-free survival (PFS) and overall survival (OS) in our combined cohort (SCP and CP arms). Expression of FGF-R1 and VEGF-R1 was higher in patients who responded to therapy ((CR+PR) vs. (SD+PD+ un-evaluable)). Conclusions: In light of the absence of treatment effect associated with sorafenib, the association found between FGF-R1 and VEGF-R1 expression and OS, PFS and response might reflect a predictive biomarker signature for carboplatin/paclitaxel-based therapy. Seeing that carboplatin and pacitaxel are now widely used for this disease, corroboration in another cohort might enable us to improve the therapeutic ratio of this regimen. © 2013 Jilaveanu et al

    Hydrogel-based delivery of antimiR-221 enhances cartilage regeneration by endogenous cells

    Get PDF
    Articular cartilage is frequently injured by trauma or osteoarthritis, with limited and inadequate treatment options. We investigated a new strategy based on hydrogel-mediated delivery of a locked nucleic acid microRNA inhibitor targeting miR-221 (antimiR-221) to guide in situ cartilage repair by endogenous cells. First, we showed that transfection of antimiR-221 into human bone marrow-derived mesenchymal stromal cells (hMSCs) blocked miR-221 expression and enhanced chondrogenesis in vitro. Next, we loaded a fibrin/hyaluronan (FB/HA) hydrogel with antimiR-221 in combination or not with lipofectamine carrier. FB/HA strongly retained functional antimiR-221 over 14 days of in vitro culture, and provided a supportive environment for cell transfection, as validated by flow cytometry and qRT-PCR analysis. Seeding of hMSCs on the surface of antimiR-221 loaded FB/HA led to invasion of the hydrogel and miR-221 knockdown in situ within 7 days. Overall, the use of lipofectamine e
    corecore