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a b s t r a c t 

Current treatments for cartilage lesions are often associated with fibrocartilage formation and donor site 

morbidity. Mechanical and biochemical stimuli play an important role in hyaline cartilage formation. Bio- 

compatible scaffolds capable of transducing mechanical loads and delivering bioactive instructive factors 

may better support cartilage regeneration. 

In this study we aimed to test the interplay between mechanical and FGF-18 mediated biochemical sig- 

nals on the proliferation and differentiation of primary bovine articular chondrocytes embedded in a 

chondro-conductive Fibrin-Hyaluronan (FB/HA) based hydrogel. 

Chondrocytes seeded in a Fibrin-HA hydrogel, with or without a chondro-inductive, FGFR3 selective FGF18 

variant (FGF-18v) were loaded into a joint-mimicking bioreactor applying controlled, multi-axial move- 

ments, simulating the natural movements of articular joints. Samples were evaluated for DNA content, 

sulphated glycosaminoglycan (sGAG) accumulation, key chondrogenic gene expression markers and his- 

tology. 

Under moderate loading, samples produced particularly significant amounts of sGAG/DNA compared to 

unloaded controls. Interestingly there was no significant effect of FGF-18v on cartilage gene expression 

at rest. Following moderate multi-axial loading, FGF-18v upregulated the expression of Aggrecan (ACAN), 

Cartilage Oligomeric Matrix Protein (COMP), type II collagen (COL2) and Lubricin (PRG4). Moreover, the 

combination of load and FGF-18v, significantly downregulated Matrix Metalloproteinase-9 (MMP-9) and 

Matrix Metaloproteinase-13 (MMP-13), two of the most important factors contributing to joint destruc- 

tion in OA. Biomimetic mechanical signals and FGF-18 may work in concert to support hyaline cartilage 

regeneration and repair. 

Statement of significance 

Articular cartilage has very limited repair potential and focal cartilage lesions constitute a challenge for 

current standard clinical procedures. The aim of the present research was to explore novel procedures and 

constructs, based on biomaterials and biomechanical algorithms that can better mimic joints mechanical 

and biochemical stimulation to promote regeneration of damaged cartilage. 

Using a hydrogel-based platform for chondrocyte 3D culture revealed a synergy between mechanical 

forces and growth factors. Exploring the mechanisms underlying this mechano-biochemical interplay may 

enhance our understanding of cartilage remodeling and the development of new strategies for cartilage 

repair and regeneration. 

© 2020 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. 
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. Introduction 

Articular cartilage is a highly specialized tissue that provides

ow friction and allows for efficient load bearing and distribution.

he major cartilage constituents comprise a highly hydrated and

rganized extracellular matrix (ECM), consisting mostly of collagen

bres and proteoglycans, and a low density of specialized chon-

rocytes [1] . Articular cartilage is non-vascularized, non-innervated

nd lacks a supporting perichondrial layer, therefore, once dam-

ged, it does not elicit effective tissue repair responses. Cartilage

amage and associated catabolic processes are usually irreversible

nd often lead to permanent cartilage loss and osteoarthritis (OA)

2] . 

Different strategies over the years have attempted to regener-

te cartilaginous tissue. Surgical techniques, such as abrasive chon-

roplasty, microfracture and spongialization, failed to achieve au-

hentic tissue repair, but, instead, formed fibrocartilaginous tis-

ue, which does not possess the mechanical properties of normal

ealthy cartilage [3 , 4] . Another procedure receiving much attention

s autologous chondrocyte implantation (ACI). However, ACI usu-

lly requires multiple surgeries, along with long periods of recov-

ry and rehabilitation. On the other hand, matrix-associated ACI

MACI), applies an exogenous matrix that can improve the me-

hanical stability and durability of the implanted cells as well as

rovide a proper stimulus for chondrogenic differentiation and car-

ilage regeneration [5 , 6] . 

Several studies have demonstrated that fibrin-based hydrogels

rovide a most suitable environment for multiple cell functions,

.e. migration, proliferation and differentiation [7–9] . Chondrocytes

mbedded in fibrin hydrogels retain their rounded differentiated

orphology and produce cartilaginous ECM [10 , 11] . However, fib-

in particularly when subjected to the harsh environment of OA,

ndergoes fibrinolysis and loss of scaffold stability [12] . While

apid degradation can be an advantage in some applications (e.g.

ound dressing), it represents a limitation for cartilage repair.

ong-term stability of the scaffold is required to provide enough

ime for cell proliferation, differentiation and matrix production

13] . 

Effort s were therefore made to add bio-macromolecules to

he fibrin hydrogel to improve its stability [14] . Incorporation of

yaluronic acid (HA) into fibrin-based scaffolds decreases the fib-

inolysis rate and improves the mechanical and biological prop-

rties in-vitro and in-vivo [15–17] . HA, a major component of ar-

icular cartilage and synovial fluid, supports cell proliferation and

aintains the chondrogenic phenotype, increasing the production

f cartilaginous ECM [18–21] . 

Fibrin-hyaluronan hydrogels have been described as adequate

latforms for cartilage regeneration, able to crosslink in situ, at

ody temperature, rendering the system safely injectable and min-

mally invasive [8 , 16 , 22–24] . These have been shown to increase

he secretion of extracellular matrix components, such as GAG and

ollagen, when compared to chondrocytes embedded in agarose or

lginate gels [14] . Cell-hydrogel constructs develop increased me-

hanical strength following the deposition of extracellular matrix

nriched in collagen type II, a hallmark of hyaline cartilage [16] .

n gel matrix deposition may facilitate the conductance of intraar-

icular mechanical stimuli which have been shown to be of criti-

al importance in stimulating the development of normal articular

yaline cartilage [16] . 

Various anabolic compounds have been evaluated to promote

artilage regeneration [25 , 26] . In mature articular chondrocytes, fi-

roblast growth factor-18 (FGF-18) exhibits mitogenic activities in

ddition to increased ECM production, thereby promoting carti-

age repair, in both in vitro and in vivo models [27–31] . N-terminal

runcated FGF-18 variant (FGF-18v) was shown to have improved

pecificity for FGF receptor-3 (FGFR-3), the major FGFR isotype
nvolved in chondrocytes differentiation and maturation [32 , 33] .

orrea et al. showed a clearly enhanced anabolic effect of mu-

ated version FGF-18, signaling exclusively through FGFR-3, increas-

ng the production and expression of ECM components (e.g. gly-

osaminoglycans, aggrecan, type II collagen), in comparison with

ild-type FGF-18 and TGF- β [34] . 

Biomechanical studies have been designed with the aim

o regenerate neo-tissue resembling native healthy cartilage

26 , 35 , 36] . Mechanical stimulation has been shown to tran-

criptionally activate the expression of genes associated with

arious cellular processes in chondrocytes, including ma-

rix accumulation and pro-inflammatory gene suppression

37] . Different bioreactors and loading devices have been de-

igned to stimulate neo articular cartilage development, pro-

iding chondrocytes with optimized mechanical cues [38 , 39] .

ulti-axial loading has been shown to effectively stimulate the

ynthesis of cartilaginous ECM macromolecules in chondrocytes

ultured in 3D scaffolds [26] . Specifically, intermittent dynamic

ompression and sliding surface motion, applied by a ceramic ball,

as been shown to improve the gene expression and the synthesis

f cartilage specific matrix molecules in chondrocytes-scaffold

onstructs [40–44] . Both lubricin and cartilage oligomeric matrix

rotein gene expression are markedly enhanced by applying

liding motion to the surface of a three-dimensional scaffold,

hereas the upregulation of collagen Type II and aggrecan was

ore associated with the application of compression [26] . 

Previous studies have combined mechanical loading with

rowth factor supplementation (e.g. fibroblast growth factor-2,

ransforming growth factor- β , insulin-like growth factor-1, os-

eogenic protein-1), to modulate chondrocytes phenotype, prolif-

ration and biosynthetic rates [45–48] . However, to the best of our

nowledge, the interplay between mechanical stimuli and FGF-18

upplementation is still unknown. We therefore investigated the

ffects of FGF-18v on primary chondrocytes seeded in a 3D fibrin:

yaluronan (FB/HA)-based hydrogel under free swelling and me-

hanical loading conditions. Cell-hydrogel constructs, in the pres-

nce or absence of FGF-18v, loaded in a custom made joint-

imicking bioreactor were followed for changes in anabolic and

atabolic gene expression and ECM production. This combined sys-

em may also provide an efficient, pre-clinical model for evaluating

arious cartilage and joint therapeutic modalities prior to animal

esting and clinical translation. 

. Materials and methods 

.1. Fibrin-HA hydrogel production 

The FB/HA hydrogel (3.2:1 ratio) was manufactured and pro-

ided by ProCore Biomed Inc. (Ness Ziona, Israel), at final concen-

rations of 6.21 mg/mL and 1.94 mg/mL of fibrinogen and HA, re-

pectively. Fibrinogen:HA conjugates were synthesized via a two-

tep procedure as previously described [49] . Briefly, HA (1.55 MDa;

ifecore Biomedical, Minnesota, USA) was initially reacted with a

ixture of 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC; 

igma, Israel) and N -hydroxysuccinimide (NHS; Sigma, Israel) to

onvert part of its carboxylic groups to NHS-active ester moieties.

n a second step, a buffered solution of fibrinogen (Omrix, Israel)

as reacted with the HA active ester solution to produce a clear

brinogen:HA conjugate solution. 

.2. Chondrocyte isolation and culture conditions 

Chondrocytes were isolated from full thickness fetlock joint

artilage of 4–8 months old calves, using sequential pronase

Roche, Mannheim, Germany) and collagenase (Worthington Bio-

hemical Corporation, NJ, USA) digestion [38] . Isolated chondro-
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Fig. 1. DNA content (A) and Total sGAG (accumulated in the media and in the construct) per DNA ratio (B) of unloaded and loaded chondrocytes seeded FB/HA hydrogels 

after 14 days, in presence (F18) or absence (no F18) of FGF-18v supplementation. FGF-18v supplementation featured two concentrations, 10 ng/mL or 100 ng/mL (10 ng and 

100 ng, respectively). Results from 4 chondrocyte donors, assessed in triplicates, are shown; ∗ p < 0.05, ∗∗ p < 0.01. 
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cytes (7.5 ×10 6 cells/construct) were suspended in the fibrino-

gen:HA conjugate (330 μL/construct) and thrombin solution (Om-

rix, Israel) (22 μL/construct; 50 U/mL) was added at a vol-

ume ratio of 1:15 (final concentrations, FB: 5.86 mg/mL; HA:

2.34 mg/mL; thrombin: 3.13 U/mL). Upon, thrombin addition, the

suspension was mixed to achieve optimal cell distribution, placed

in polyurethane moulds and allowed to crosslink. Cell-hydrogel

constructs (8 mm diameter; 4 mm height) were then placed into

bioreactor sample holders and incubated for 30 min at 37 °C and

5% CO 2 , to allow complete gelation. The constructs were then cul-

tured in growth medium (Dulbecco’s Modified Eagle’s medium,

high glucose (DMEM-HG), 4.5 g/L-glucose; Gibco), supplemented

with penicillin/streptomycin (1% P/S, Gibco), 50 μg/mL ascorbic

acid-2 phosphate (AA-2P, Sigma), 1% insulin-transferrin-selenium

(ITS) and non-essential amino acids. Constructs were exposed to

10 ng/mL or 100 ng/mL of FGF-18v (Procore Bio Med, Ness Ziona,

Israel), added to culture media and replenished on every medium

exchange. Controls not exposed to FGF-18v were included. FGF18v

is a truncated version of FGF-18 lacking the amino-terminal last 50

amino acids of the ligand and has the first methionine replace glu-

tamine 51 [32] . The medium was changed every second day, and

conditioned medium was collected for analysis of sulphated gly-

cosaminoglycans (sGAG) ( Section 2.4 ). 

2.3. Mechanical loading 

The hydrogel-chondrocytes constructs were cultured under free

swelling conditions for 5 days, to allow cell attachment, coloniza-

tion and initiation of ECM deposition, similar to previously pub-

lished and optimized protocol [50–52] . Subsequently, constructs

were exposed to mechanical loading, in the presence or absence of

different concentrations of FGF-18v. Mechanical stimuli were ap-

plied using a four-station bioreactor system, installed in an incu-

bator at 37 °C, 5% CO 2 , 85% humidity. At each station, a commer-

cially available ceramic hip ball (32 mm in diameter) was pressed

onto a cell-seeded hydrogel to provide a constant displacement of

0.4 mm or 10% of the scaffold height (measured in the construct

center). The ball oscillated vertically in a sinusoidal manner be-

tween 0.4 mm and 0.45 mm, i.e., between 10% and 11.25% of the

construct height, at a frequency of 0.5 Hz. In addition to the cyclic

compressive loading, reciprocate rotation of the ball about an axis

perpendicular to the construct axis was promoted, at an ampli-

tude of 25 ° and a frequency of 0.5 Hz ( Fig. 1 ). This regime of dy-

namic axial compression with superimposed sliding motion simu-

lates joint articulation more closely compared to axial compression

alone [38] . 

One hour of mechanical loading was performed daily for 14

days. In between loading cycles, the constructs were kept in a free

swelling condition (without ball contact). Construct analysis was
erformed after a total culture time of 19 days. Unloaded scaffolds

erved as controls. 

.4. Biochemical assays 

Cell-loaded hydrogels were digested overnight with 0.5 mg/mL

f proteinase K, at 56 °C (2.5 U/mg, chromozyme assay; Roche,

annheim, Germany). The PicoGreen® Assay (Molecular Probes,

ife Technologies) was used to assess the DNA content as per

anufacturer’s guidelines. The sample fluorescence was mea-

ured using a microplate reader (VICTOR3 V’ Multilabel Counter,

erkinElmer BioSignal Inc, USA) at 480 nm excitation and 520 nm

mission. The amount of sulphated glycosaminoglycans (sGAG) was

etermined by a dimethylmethylene blue dye assay using DMMB

olution at pH 1.5 and bovine chondroitin sulfate as a standard.

otal sGAG content of the culture media was also measured to as-

ess the release of matrix molecules from the constructs into the

edia. 

.5. Gene expression analysis 

Total RNA was extracted from homogenized constructs us-

ng TRI Reagent (Molecular Research center, Cincinnati, OH). Re-

erse transcription was performed with TaqMan 

TM reverse tran-

cription reagents (Thermo Fisher Scientific, Reinach, Switzerland),

sing random hexamer primers and 500 ng of total RNA. PCR

as performed using a QuantStudio TM 6 real-time PCR instru-

ent (Applied Biosystems) and TaqMan 

TM Gene Expression Mas-

er Mix. Table 1 shows the sequences of bovine primers and

aqMan 

TM probes for aggrecan (ACAN), collagen type-I (COL1),

ype-II (COL2), type-X (COL10), cartilage oligomeric matrix pro-

ein (COMP), proteoglycan 4 (PRG4/Lubricin), matrix metallopro-

einases −3, −9 and −13 (MMP-3, −9 and −13). Primers and probe

or amplification of 60S acidic ribosomal protein lateral stalk P0

RPLP0, Bt03218086_m1) were acquired from Applied Biosystems

Rotkreutz, Switzerland). Relative quantification of target mRNA

as performed according to the comparative CT method, using

PLP0 as an endogenous control [53] . 

.6. Histology 

Histological samples were fixed in 4% buffered formaldehyde

Formafix AG, Hittnau, CH) for 24 h, embedded in paraffin and sec-

ioned in 5 μm sections. For staining, slides were deparaffinized us-

ng xylene and subsequently hydrated. Safranin-O/Fast green stain-

ng was performed to visualize proteoglycan and collagen deposi-

ion. Briefly, slides were first stained with Weigert’s haematoxylin

or 10 min, blued in tap water for 10 min, stained with 0.002%

ast green in deionized water for 5 min and washed in 1% acetic
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Table 1 

Oligonucleotide primers and probes used for qRT-PCR. 

Gene Primer forward (5 ′ −3 ′ ) Primer reverse (5 ′ −3 ′ ) Probe (5 ′ FAM-3 ′ TAMRA) 

ACAN CCA ACG AAA CCT ATG ACG TGT ACT GCA CTC GTT GGC TGC CTC ATG TTG CAT AGA CCT CGC CCT CCA T 

COL1 TGC AGT AAC TTC GTG CCT AGC A CGC GTG GTC CTC TAT CTC CA CAT GCC AAT CCT TAC AAG AGG CAA CTG C 

COL2 AAG AAA CAC ATC TGG TTT GGA GAA A TGG GAG CCA GGT TGT CAT C CAA CGG TGG CTT CCA CTT CAG CTA TGG 

COL10 ACT TCT CTT ACC ACA TAC ACG TGA AAG CCA GGT AGC CCT TGA TGT ACT CA TGC CGT TCT TAT ACA GAC CTA CCC AAG CAT G 

COMP CCA GAA CGA CCA GAA TCT GAT CTG AGT TGG GCA CCT T ACG GCG ACC GGA TCC GCA A 

PRG4 GAG CAG ACC TGA ATC CGT GTA TT GGT GGG TTC CTG TTT GTA AGT GTA CTG AAC GCT GCC ACC TCT CTT GAA A 

MMP-3 GGC TGC AAG GGA CAA GGA A CAA ACT GTT TCG TAT CCT TTG CAA CAC CAT GGA GCT TGT TCA GCA ATA TCT AGA AAA C 

MMP-9 ACG AAC CAA CCT CAC CAA CAG TGC CCC AGG AGT GTA GCC CAG CTG GCA GAG GAA TAC CTG TAC CGC 

MMP-13 CCA TCT ACA CCT ACA CTG GCA AAA G GTC TGG CGT TTT GGG ATG TT TCT CTC TAT GGT CCA GGA GAT GAA GAC CCC 
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cid. Sections were then stained with 0.1% Safranin-O for 12 min

nd then imaged (Zeiss Axiovert 200 M, Switzerland). ImageJ soft-

are (National Institutes of Health, Bethesda, MD) was used for

utomated quantification of the intensity of red-stained sections,

y colour thresholding the regions of interest and calculating the

ercentage of stained area. 

.7. Immunohistochemistry 

For immunohistochemical analysis, samples were fixed in 4%

uffered formaldehyde (Formafix AG, Hittnau, CH) for 24 h, em-

edded in paraffin and sectioned in 5 μm sections. Before immuno-

abeling for the aggrecan protein could be conducted, reduction

nd alkylation steps were necessary to expose a neoepitope. The

ndogenous peroxidase activity was blocked with 0.3% peroxidase

n 100% methanol and the sections were enzymatically pre-treated

0.25 U/ml of Chondroitinase ABC and 25 mg/mL of hyaluronidase;

oth Sigma, St.Louis, MO). Next, sections were blocked with horse

erum (1:20 in PBS-T) and, subsequently, incubated with the pri-

ary antibodies (overnight at 4 °C) against Aggrecan (12/21/1-C-6,

 μg/ml) and COL2 (CIICI, 2 μg/ml IgG) (both Developmental Stud-

es Hybridoma bank, University of Iowa, Iowa City, IA). The Vec-

astain elite ABC kit mouse IgG and the ImmPACT DAB peroxidase

ubstrate were used as detection system (both Vector Laboratories,

urlingame, CA). The cell nuclei were stained with Mayer’s haema-

oxylin. 

.8. Statistical analysis 

The results are expressed as mean + ±standard deviation (SD)

f four independent experiments using four chondrocyte donors

 n = 12). As sGAG, DNA content and qPCR data did not follow nor-

al distribution when analysed using the Shapiro–Wilk test, sta-

istical analysis using, non-parametric, Kruskal–Wallis analysis was

erformed, followed by a post-hoc Dunn’s comparison test. Differ-

nces were considered statistically significant for p < 0.05. 

The COL2/COL1 ratio was calculated as 2 ̂ (- �Ct(COL2))/2 ̂ (-

Ct(COL1)). 

. Results 

.1. Mechanical stimulation promotes sGAG production 

To test the biological response of chondrocytes seeded in hy-

rogels to mechanical loading and FGF-18v stimulation, DNA and

GAG content were quantified after 19 days in culture. All samples,

ndependent of the application of mechanical loading and/or FGF-

8v showed similar DNA content when compared to control sam-

les (Day 5 - before loading; Fig. 1 A). Sample groups exposed to

echanical loading produced significantly more sGAG (normalized

o DNA content) when compared to unloaded samples, both in the

resence or absence of FGF-18v ( p < 0.01 for no F18 and F18 10 ng
roups; p < 0.001 for F18 100 ng group) ( Fig. 1 B). The sole expo-

ure of the constructs to FGF-18v did not significantly affect sGAG

roduction at either concentration in comparison to the samples

ithout F18v. 

To further assess the effect of the treatments on sGAG pro-

uction, Safranin-O/Fast Green staining was performed ( Fig. 2 )

nd quantified (Fig. S3). Mechanical stimulation led to increased

AG deposition, when compared to unloaded controls (with and

ithout FGF-18v supplementation). This finding is in line with

GAG/DNA results. In addition, FGF-18v supplementation did not

ncrease proteoglycan deposition, as previously seen in the DMMB

ssay. 

Furthermore, ACAN immunohistochemistry staining was as- 

essed ( Fig. 3 ). Results were found in line with those of sGAG/DNA

nd Safranin-O/Fast Green, displaying increased ACAN production

nd deposition, when exposed to mechanical loading. Such was

ore evident when combined with 100 ng/mL FGF-18v and with-

ut FGF-18v supplementation. 

.2. Synergistic effect of mechanical loading and FGF-18v 

upplementation on cartilage gene expression 

To assess the effects of FGF-18v and the applied stimuli on the

henotype of primary chondrocytes embedded in FB/HA hydro-

els, mRNA expression was evaluated after loading. Gene expres-

ion of ACAN, COMP and PRG4 was increased under loading ( Fig. 4 )

n an FGF-18v dependent manner. Thus, the combination of me-

hanical loading and low FGF-18v concentration (10 ng/mL) signif-

cantly upregulated ACAN expression ( Fig. 4 A), when compared to

oaded samples without FGF-18v (no F18 loaded; p < 0.001). More-

ver, both FGF-18v concentrations, in combination with mechan-

cal loading, significantly upregulated COMP expression ( Fig. 4 B).

GF18v at 10 ng/mL, in mechanically loaded samples, showed

 significant effect when compared to unloaded samples with-

ut FGF-18 (no F18 unloaded; p < 0.01). FGF18v at 100 ng/mL

ith mechanical loading showed a significant COMP upregula-

ion over unloaded samples without FGF-18v (no F18 unloaded;

 < 0.001), unloaded samples with 10 ng/mL FGF-18v (F18 10 ng

nloaded; p < 0.05) and unloaded samples with 100 ng/mL FGF-18v

F18 100 ng unloaded; p < 0.0001). PRG4 upregulation under load

as noticeable at high FGF-18v concentration (100 ng/mL, Fig. 4 C),

n comparison to no F18 unloaded and unloaded samples exposed

o 100 ng/mL FGF-18v (F18 100 ng unloaded). The comparisons

ound no statistical significance. 

Mechanical stimulation and 100 ng/mL FGF-18v supplementa-

ion significantly upregulated COL2 expression over no F18 loaded

 p < 0.05; Fig. 5 B). On the other hand, treatments did not exert sig-

ificant effects on COL1 and 10 expression ( Fig. 5 A and C, respec-

ively). When evaluating expression levels normalized to the ref-

rence gene (absolute expression; - �Ct), the expression of COL2

as always higher than that of COL1 (Fig. S1A), for all time points

nd sample groups, which indicates a COL2/COL1 ratio favorable to
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Fig. 2. Representative Safranin-O/Fast Green stained chondrocyte-seeded FB/HA hydrogels, after 5 days (pre-treatments) and 19 days (post-treatments) in culture; 20 ×
magnification, scale bars indicate 100 μm. 

Fig. 3. Representative aggrecan IHC staining of chondrocyte-seeded FB/HA hydrogels, after 5 days (pre-treatments) and 19 days (post-treatments) in culture; 20 × magnifica- 

tion, scale bars indicate 100 μm. 
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COL2. To support this, COL2/COL1 ratio was calculated (Fig. S1B).

Moreover, the absolute expression of COL10 was seen to drop af-

ter seeding in the hydrogel scaffolds (Day 5 – untreated control),

further decreasing through time, at the end of the experiment. To

complement COL2 expression, IHC staining was performed ( Fig. 6 ).

In line with gene expression findings, IHC staining revealed in-
reased production and deposition of COL2 in loaded samples sup-

lemented with 100 ng/mL FGF-18v. 

When analysing MMP-9 and MMP-13 expression ( Fig. 7 B and

), loading significantly decreased the expression of both genes,

n the presence and absence of FGF-18v. Mechanical loading, by

tself, and in combination with 100 ng/mL FGF-18v was able to
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Fig. 4. ACAN (A), COMP (B) and PRG4 (C) mRNA expression of chondrocytes seeded into FB/HA hydrogels, exposed to mechanical stimulation and FGF-18v. Data are expressed 

relative to mRNA levels of unloaded constructs (No F18 Unloaded). Results from 4 chondrocyte donors assessed in triplicates are shown; ∗p < 0.05, ∗∗p < 0,01, ∗∗∗p < 0.001, 
∗∗∗∗p < 0,0 0 01. 

Fig. 5. COL1 (A), COL2 (B) and COL10 (C) mRNA expression of chondrocytes seeded into FB/HA hydrogels, exposed to mechanical stimulation and FGF-18v. Data are expressed 

relative to mRNA levels of unloaded constructs (No F18 Unloaded). Results from 4 chondrocyte donors assessed in triplicates are shown; ∗p < 0.05. 

Fig. 6. Representative COL2 IHC staining of chondrocyte-seeded FB/HA hydrogels, after 5 days (pre-treatments) and 19 days (post-treatments) in culture; 20 × magnification, 

scale bars indicate 100 μm. 
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M  
ignificantly downregulate MMP-9, in comparison with no F18 un-

oaded ( p < 0.001 and p < 0.05, respectively). In addition, mechani-

al loading in combination with both FGF-18v concentrations was

ble to significantly downregulate MMP-9, in comparison with F18

0 ng unloaded (F18 10 ng loaded, p < 0.05; F18 100 ng loaded,

 < 0.01). MMP-13 expression was significantly downregulated by
echanical loading, by itself, and in combination with 10 ng/mL

GF-18v, in comparison with no F18 unloaded ( p < 0.05 and p < 0.01,

espectively). Moreover, mechanical loading in combination with

0 ng/mL FGF-18v was able to significantly downregulate MMP-9,

n comparison with F18 10 ng unloaded ( p < 0.01). When analysing

MP-3 expression, despite most of the donors showing the same
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Fig. 7. MMP-3 (A), MMP-9 (B) and MMP-13 (C) mRNA expression of chondrocytes seeded into FB/HA hydrogels, exposed to mechanical stimulation and FGF-18v. Data are 

expressed relative to mRNA levels of unloaded constructs (No F18 unloaded). Results from 4 chondrocyte donors assessed in triplicates are shown; ∗p < 0.05, ∗∗p < 0,01, 
∗∗∗p < 0.001. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

s  

P  

m

 

c  

c  

3  

c  

5  

c  

f  

a  

v  

f  

w  

f  

r  

m  

t  

c

 

u  

i  

[  

w  

P  

a  

s  

u  

d  

t  

t  

u  

t  

c  

c  

t  

a  

o  

A  

c  

c  

a  

a  

c  

F  

e  

v  

d  

s  
profile seen in MMP-9 and −13, no significant differences were

found as an outcome of the treatments ( Fig. 7 A). 

4. Discussion 

The rationale driving this study was to create a controlled

mechanochemical environment in vitro and investigate a poten-

tial synergistic effect between bi-axial mechanical stimulation and

FGF-18v supplementation on primary bovine chondrocytes embed-

ded in a FB/HA hydrogel-based 3D platform. The effect of the com-

bined treatments on the expression of cartilage genes, matrix pro-

duction and phenotype of primary bovine chondrocytes was ex-

plored in comparison to untreated controls. The combination of

mechanical stimulation together with FGF-18v supplementation re-

sulted in the upregulation of ACAN, COMP, COL2 and PRG4, while

down-regulating MMPs expression. In addition, histological analy-

sis showed increased ACAN, COL2 and GAG deposition. To the best

of our knowledge, the interaction of biomimetic mechanical and

FGF-18v biochemical stimuli has not been tested before, providing

experimental evidence for the benefits of FGF-18v application in

cartilage repair, in combination with mechanical loading. 

Complex mechanical motion plays a crucial role in the devel-

opment of cartilage and maintenance of the chondrogenic pheno-

type [26 , 38 , 44] . The loading protocol we used originated from pro-

tocols previously described by Grad et al. [38] . The original pro-

tocol featured the mechanical stimulation of chondrocyte-seeded

polyurethane (PU) scaffolds, by applying a cyclical regime con-

sisting of dynamic compression with superimposed sliding mo-

tion (shear). Being mechanically stiffer, PU scaffolds were subject

to higher intensity set-ups, with a constant compression displace-

ment of 10% of the scaffold’s height (and a dynamic oscillation

between 10% and 20%), together with ±25 ° perpendicular shear

movement, both at the frequency of 1 Hz. Fibrin-based hydrogels

used here feature lower resilience than PU scaffolds. We there-

fore tuned down the mechanical loading set-up to fit the mechani-

cal profile of our constructs. Additionally, applying controlled, sub-

maximal mechanical stimulation may have revealed a differential

response of cell differentiation markers to mechanical stimulation

as well as uncovered the mechanical requirements for precondi-

tioning cells to respond to biochemical signals such that of FGF-

18. Moderate multi-axial loading may better represent the limited,

partial weight bearing loads exerted on articular joints of patients

suffering from OA and undergoing various treatment protocols, in-

cluding intraarticular injection of the presented Fibrin-HA hydrogel

(Regenogel) [54–57] . Despite using a lower intensity set-up, it is

worth noting that the mechanical loading resulted in a significant

increase in total sGAG production, further supported by Safranin-

O/Fast Green and ACAN IHC staining, when compared to unloaded

controls, as previously seen for the higher intensity set-up [38] .

Hence, using FB/HA as a 3D platform, a similar increase in total
GAG production was observed compared to previous studies with

U scaffolds, validating this hydrogel as a proper environment for

echanical stimulation of chondrocytes [38 , 44] . 

The provision of FGF-18v did not result in any significant

hanges in total sGAG production, with or without mechani-

al loading. Gigout et al. showed that porcine chondrocytes, in

D pellet culture, when exposed to recombinant FGF-18 in non-

ontinuous fashions (one-week exposure, once/week exposure) for

 weeks, resulted in higher matrix deposition compared to the

ontinuously exposed ones [27] . This is called a “hit and run” ef-

ect, where short exposure periods tend to more effectively initiate

 cascade response, inducing an anabolic effect. Intermittent pro-

ision of FGF-18v (once/week) was tested in the present system,

or Donor 1, failing to increase sGAG production (in combination

ith or without mechanical loading), and therefore was dropped

or the remaining donors (Fig. S2). The fact that our experiment

an for 3 weeks against the 5-week span featured in Gigout et al.,

ay have played a role in the differences observed. Furthermore,

he cell type used, the age and health of the donor should also be

onsidered relevant to the outcome of the study. 

Mechanical loading and FGF-18 supplementation have individ-

ally shown promise, in several in vitro studies, in maintain-

ng chondrogenic phenotype and enhancing matrix production

27 , 30 , 34 , 38 , 44 , 58] . Previous studies have shown that compression

as associated with an upregulation of ACAN, whereas COMP and

RG4 gene expression were markedly enhanced by shear motion

t the surface of cell-seeded constructs [26] . Nonetheless, in our

tudy mechanical stimulation by itself was not able to significantly

pregulate these genes compared to unloaded samples, most likely

ue to the combination of lower dynamic compression applied and

he low-frequency shear modulus (0.5 Hz instead of 1 Hz). Despite

he provision of FGF-18v was also not sufficient to promote upreg-

lation of these genes in unloaded samples, it is noteworthy that

he combination of the factor and mechanical stimuli markedly in-

reased the expression of cartilage matrix genes in a synergisti-

al way (i.e. ACAN, COMP, COL2 and PRG4). Huang et al. described

he upregulation of ACAN, COMP and PRG4 by FGF-18 on human

dipose-derived stem cells, suggesting that a higher concentration

f 100 ng/mL was more effective than a lower one (10 ng/mL) [59] .

lthough working on a different set of cells (i.e. primary bovine

hondrocytes), by combining FGF-18v supplementation with me-

hanical loading we were able to achieve upregulation of ACAN

nd COMP on lower FGF-18v concentration (10 ng/mL). Conversely,

nd despite no statistical significance found, PRG4 showed in-

reased upregulation at the highest FGF-18v concentration used.

urthermore, Correa et al. described a study, where human mes-

nchymal stem cells were supplemented with TGF- β and the same

ariant FGF-18 herein used [34] . In a time-frame similar to ours (21

ays experiment, starting FGF-18v exposure on day 7; continuous

upplementation), no ACAN upregulation was achieved, indicating
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hat mechanical loading is important and necessary to induce ex-

ression of cartilage matrix genes. 

While the expression of COL1 and 10 showed no significant

ifferences between treatment groups ( Fig. 5 A and C, respectively),

he synergistic action of mechanical loading and 100 ng/mL

GF-18v led to significant COL2 upregulation ( Fig. 5 B), further

upported by IHC analysis ( Fig. 6 ). Furthermore, when looking

t unnormalized gene expression data (Fig. S1A), COL2 overall

xpression was higher than COL1 expression for all groups. Thus,

e calculated COL2/COL1 absolute expression ratio (Fig. S1B),

onfirming a ratio favorable to COL2, suggesting that the chon-

rocytic phenotype was maintained within the 3D environment

n both treated and untreated conditions. This should lead to the

roduction of hyaline cartilaginous tissue in favor of fibrocartilage

60] . In addition, in our system COL10 expression decreased after

eeding into the hydrogel (Fig. S1A), further suggesting the preser-

ation of the differentiated state of chondrocytes, not leading to

ypertrophy, characteristic of OA cartilage [61] . 

Mechanical stimulation is known to be critical for maintain-

ng tissue homeostasis, being a key factor in regulating the

alance between chondrocyte anabolic and catabolic processes

26 , 38 , 42 , 44 , 62] . Consistent with other reports [58 , 63 , 64] , our find-

ngs showed a decrease in the expression of the matrix degrading

nzymes, MMP-9 and -13, thereby limiting ECM degradation asso-

iated with joint pathologies. This means that our treatment did

ot foster collagenase-induced ECM degradation, but even down-

egulated the expression of matrix degrading agents. Additionally,

ther studies have shown that FGF-18 supplementation led to a

ownregulation of MMP expression (e.g. MMP-2, -3, -9 and -13),

hich corroborates our findings [65–67] . Mori and associates sug-

ested that such inhibitory effects are indirect, via the induction

f tissue inhibitor of metalloproteinases (TIMPs), that execute anti-

atabolic actions [67] . These endogenous inhibitors are paramount

n the regulation of the MMP activity, creating a balance between

he production of active enzymes and their inhibition, thus regu-

ating ECM turnover, tissue remodeling and cellular behavior [68] .

he study performed by Mori et al., showed a decrease in MMP-9

nd -13 expression by exposing articular chondrocytes to high con-

entration FGF-18, for a short period of time, while increasing, sig-

ificantly, TIMP-1 expression [67] . While the present study ran for

 longer span of time, lower dosage FGF-18v combined with me-

hanical loading, significantly down-regulated MMP-9 and -13 ex-

ression. This further confirm the feasibility of the 3D FB/HA plat-

orm as responsive system under load. 

Biomechanical data demonstrating the superior mechanical

roperties of these FB/HA hydrogels, in comparison to Fibrin alone,

ave been previously described, including long term stability of

els containing cells in vitro, frequency-dependent storage moduli

G’) and the ratio between storage and loss moduli (G’/G”) over-

ll indicating a solid-elastic character [8 , 22] . Moreover, as by defi-

ition, hydrogels are characterized by the water-retaining capacity

f their polymeric networks [69] . These specific FB/HA hydrogels

ere found to retain more than 90% of their original water con-

ent due to the unique HA conjugation overcoming clot retraction,

 physiologically inherent property of all Fibrin networks (unpub-

ished data). 

Moreover, degradation of biomaterial-based scaffolds heavily

epends on the enzymatic milieu determined by tissue and cell

ype, and in particular by the action of matrix degrading enzymes,

uch as MMPs [70] . FB/HA hydrogels containing chondrocytes, or

ther differentiated cell types, maintain their overall structure for,

t least, 4–5 weeks in vitro and more than 3 months in vivo (un-

ublished data), with no sign of degradation [ref]. Similarly, we did

ot observe any significant changes in mass of the constructs over

ime. Moreover, the presented increased production of matrix com-

onents and downregulation of matrix degrading enzymes, MMP-
 and MMP-13, under loading, may further stabilize the hydrogels

rom biological degradation under the employed experimental con-

itions. 

Having found the results of our study encouraging, nonethe-

ess, the system faces certain limitations. The growth factor was

ot part of the regenerative system but was only added to the cul-

ure medium. For in vivo application of this formulation in cartilage

njuries, FGF-18v would preferably be integrated within the hydro-

el system rather than injected freely in the synovial fluid [71] . By

ntegrating the growth factor within the hydrogel, a controlled de-

ivery to the damaged area could be achieved, thus enhancing the

egenerative process. It’s also important to mention that the sys-

em does not fully mimic an in vivo scenario, since the mechanical

oading introduced only featured compression and shear, not con-

emplating rotation force, which is featured in native articular mo-

ion [26 , 58] . Moreover, the work displayed in this manuscript does

ot account for the scenario following a trauma, in vivo, specifi-

ally the resulting synovial inflammation, and all the agents influ-

ncing this process. Additionally, the system herein featured, does

ot describe a confined system, as the cell-hydrogel construct is

ot surrounded by tissue (i.e. cartilage and/or bone). Thus, moving

orward, progressing from an in vitro setting to an ex vivo , and ulti-

ately, to an in vivo setting, would offer further insight about the

otential regenerative effective of this platform of articular carti-

age. The osteochondral defect model developed by Vainieri and as-

ociates could be an interesting ex vivo platform to continue study-

ng the effects of the FB/HA platform studied, mechanical loading

nd FGF-18v supplementation [44] . 

Furthermore, FB/HA hydrogels are highly porous matrixes, with

o diffusion limit for molecules until 10 MDa (unpublished data)

n size, therefore hydrostatic pressure built-up would be virtu-

lly negligible. Nonetheless, since this is not a fully confined sys-

em, we cannot completely rule out a contribution of fluid move-

ent around the chondrocytes, which has been shown to promote

hondrogenesis, although the effect of pure hydrostatic pressure

n the expression of mechano-regulated proteins, such as PRG4 or

OMP, has not been shown [72 , 73] . It is also noteworthy that, the

ortrayed model features young chondrocytes from calf and not

ells from older, diseased, tissues (e.g. osteoarthritic chondrocytes).

hile the present study is not a model for osteoarthritis, there is

erit in translating the current work to osteoarthritic cells and in-

estigate the re-differentiation potential of the presented platform.

. Conclusion 

In conclusion, our study revealed a synergism between multi-

xial mechanical stimulation and biochemical signals delivered by

GF-18v in a fibrin-hyaluronan based hydrogel and their potential

o enhance cartilage matrix deposition. This model may be most

aluable in decoding the interplay between cells, scaffolds and car-

ilage guiding factors, elucidating signaling pathways implicated in

artilage homeostasis and repair. There may be merit in the clini-

al application of a hydrogel-based platform combined with a se-

ective FGF-18 variant, particularly when combined with moderate

artial weight bearing rehabilitation protocols. In light to the in-

erent advantages of each of the different applied stimuli, the fact

hat this platform can be injected, and crosslinked in situ, in an

utpatient minimally invasive procedure, makes it an attractive, af-

ordable and easily translatable platform for clinical application. 
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