220 research outputs found

    Research and Prediction on the Sharing of WeChat Official Accounts’ Articles

    Get PDF
    With the development of mobile Internet, We Media was born. WeChat Official Account Platform is the largest we media platform in China. In WeChat social network, information can only be rapidly spread through the sharing operation of users. This paper takes WeChat official accounts as the object and uses logistic regression model to explore the influencing factors on sharing. After that, a prediction model is constructed based on logistic regression and support vector machine. The significance of this study is to propose the factors that influence WeChat official accounts’ articles sharing, and to construct a sharing prediction model

    Diodicity mechanism Tesla-type microvalves: a CFD study

    Get PDF
    Microvalve is one of the most important components in microfluidic systems and micropumps. In this paper, three-dimensional incompressible flow through a Tesla-type microvalve is simulated using FLUENT computational fluid dynamic package. The flow is laminar and SIMPLE algorithm is used. The second-order upwind method is implemented for discretizing convective terms. The diodicity mechanism is investigated in detail for three different microvalves. Effect of several series Tesla-type microvalves on diodicity is also studied. The numerical analyses reveal that the mechanism of diodicity occurs at the T-junction and side channel. If inlet and outlet channels are eliminated, diodicity can be increased by 2. Pressure field analysis shows that the pressure drop is much severe at the junction of the reverse flow compared to the forward flow. The obtained numerical results are compared with those of experimental and a good agreement between them is noticed

    Diodicity mechanism Tesla-type microvalves: a CFD study

    Get PDF
    Microvalve is one of the most important components in microfluidic systems and micropumps. In this paper, three-dimensional incompressible flow through a Tesla-type microvalve is simulated using FLUENT computational fluid dynamic package. The flow is laminar and SIMPLE algorithm is used. The second-order upwind method is implemented for discretizing convective terms. The diodicity mechanism is investigated in detail for three different microvalves. Effect of several series Tesla-type microvalves on diodicity is also studied. The numerical analyses reveal that the mechanism of diodicity occurs at the T-junction and side channel. If inlet and outlet channels are eliminated, diodicity can be increased by 2. Pressure field analysis shows that the pressure drop is much severe at the junction of the reverse flow compared to the forward flow. The obtained numerical results are compared with those of experimental and a good agreement between them is noticed

    Application of 25 MHz B-Scan Ultrasonography to Determine the Integrity of the Posterior Capsule in Posterior Polar Cataract

    Get PDF
    Purpose. To report the application of 25 MHz B-scan ultrasonography (MHzB) to determine the integrity of the posterior capsule (PC) in posterior polar cataract (PPC). Methods. Patients with whom PPC was clinically diagnosed using slit lamp microscopy who underwent 25 MHzB before phacoemulsification were retrospectively reviewed. The status of the PC was determined by 25 MHzB before phacoemulsification and confirmed during cataract surgery. Results. In total, 21 eyes in 14 clinically diagnosed PPC patients were enrolled in this study. Out of 25 MHzB images, 19 PCs were found to be intact, while 2 showed dehiscence before cataract surgery. During phacoemulsification, 17 PCs were observed to be intact, while 4 PCs showed posterior capsule rupture (PCR). These 4 PCR cases included the above 2 eyes, in which preexisting dehiscence was detected by 25 MHzB. The other 2 PCR cases showed high reflectivity between high echoes in posterior opacities and the PC, indicating synechia between the PPC and PC. Conclusion. This is the first report to show that 25 MHzB can be used to clearly visualize the status of the PC in PPC. These results, in turn, could be used to select the appropriate treatment and to thereby avoid further complications during PPC surgery

    Next generation perfusion process development for production of biologics

    Get PDF
    Please click Additional Files below to see the full abstract

    Above 400 K Robust Perpendicular Ferromagnetic Phase in a Topological Insulator

    Get PDF
    The quantum anomalous Hall effect (QAHE) that emerges under broken time-reversal symmetry in topological insulators (TI) exhibits many fascinating physical properties for potential applications in nano-electronics and spintronics. However, in transition-metal doped TI, the only experimentally demonstrated QAHE system to date, the effect is lost at practically relevant temperatures. This constraint is imposed by the relatively low Curie temperature (Tc) and inherent spin disorder associated with the random magnetic dopants. Here we demonstrate drastically enhanced Tc by exchange coupling TI to Tm3Fe5O12, a high-Tc magnetic insulator with perpendicular magnetic anisotropy. Signatures that the TI surface states acquire robust ferromagnetism are revealed by distinct squared anomalous Hall hysteresis loops at 400 K. Point-contact Andreev reflection spectroscopy confirms that the TI surface is indeed spin-polarized. The greatly enhanced Tc, absence of spin disorder, and perpendicular anisotropy are all essential to the occurrence of the QAHE at high temperatures

    Dirac-Surface-State Modulated Spin Dynamics in a Ferrimagnetic Insulator at Room Temperature

    Get PDF
    This work demonstrates dramatically modified spin dynamics of magnetic insulator (MI) by the spin-momentum locked Dirac surface states of the adjacent topological insulator (TI) which can be harnessed for spintronic applications. As the Bi-concentration x is systematically tuned in 5 nm thick (BixSb1-x)2Te3 TI film, the weight of the surface relative to bulk states peaks at x = 0.32 when the chemical potential approaches the Dirac point. At this concentration, the Gilbert damping constant of the precessing magnetization in 10 nm thick Y3Fe5O12 MI film in the MI/TI heterostructures is enhanced by an order of magnitude, the largest among all concentrations. In addition, the MI acquires additional strong magnetic anisotropy that favors the in-plane orientation with similar Bi-concentration dependence. These extraordinary effects of the Dirac surface states distinguish TI from other materials such as heavy metals in modulating spin dynamics of the neighboring magnetic layer
    • …
    corecore