61 research outputs found
Exceptionally High CO2 Capturing Capacity of Porous Organic Polymers
Pre-combustion flue gas capture has been emerged as an efficient alternative to circumvent the costly procedures of materials regeneration utilized by the energy industry for CO2 capture and separation. Stability of the porous structure and repeated use at high pressure and high temperature are among the essential requirements for the efficient materials to be used for industrial level CO2 separation. Herein we report the CO2 adsorption-desorption performance of nanoporous covalent organic polymers (COPs), which can operate efficiently and repeatedly at elevated pressure of 200 bars and above. Since, pre-combustion capture also requires removal of hydrogen along with CO2; therefore, nanoporous COP was also tested for hydrogen removal at high pressure. COP material prepared with simple technique from building block monomers of cyanuric chloride and linked with 1,3-bis(4-piperidinyl)propane has enough surface area and pore volume which makes the material capable to store large quantity of syngas at high temperature and pressure. Results indicated that the newly synthesized COP material can adsorbed exceptionally large quantity of CO2 and very little hydrogen at 200 bars and 35°C. Additionally, the adsorption isotherm was exactly matched with the desorption isotherm, suggesting the material has excellent adsorption-desorption characteristics. Similarly, the material has shown very stable performance when used repeatedly and alternatively for CO2 and hydrogen after regeneration at 50°C. The capturing performance of material was also investigated for other gases like methane and nitrogen at various pressures and temperatures. Experimental results revealed that COP material has exceptional CO2 adsorption efficiency, very good selectivity, and strong stability and can be manufacture with simple techniques. Lastly, material is economically attractive when it is compared with the commercially available materials and has exceptional performance contrary to activated carbon, metal organic frame work and monoethanole amine.qscienc
Investigation of Ester- and Amide-Linker-Based Porous Organic Polymers for Carbon Dioxide Capture and Separation at Wide Temperatures and Pressures
Organic compounds, such as covalent organic framework, metal–organic frameworks, and covalent organic polymers have been under investigation to replace the well-known amine-based solvent sorption technology of CO2 and introduce the most efficient and economical material for CO2 capture and storage. Various organic polymers having different function groups have been under investigation both for low and high pressure CO2 capture. However, search for a promising material to overcome the issues of lower selectivity, less capturing capacity, lower mass transfer coefficient and instability in materials performance at high pressure and various temperatures is still ongoing process. Herein, we report synthesis of six covalent organic polymers (COPs) and their CO2, N2, and CH4 adsorption performances at low and high pressures up to 200 bar. All the presented COPs materials were characterized by using elemental analysis method, Fourier transform infrared spectroscopy (FTIR) and solid state nuclear magnetic resonance (NMR) spectroscopy techniques. Physical properties of the materials such as surface areas, pore volume and pore size were determined through BET analysis at 77 K. All the materials were tested for CO2, CH4, and N2 adsorption using state of the art equipment, magnetic suspension balance (MSB). Results indicated that, amide based material i.e. COP-33 has the largest pore volume of 0.2 cm2/g which can capture up to the maximum of 1.44 mmol/g CO2 at room temperature and at pressure of 10 bar. However, at higher pressure of 200 bar and 308 K ester-based compound, that is, COP-35 adsorb as large as 144 mmol/g, which is the largest gas capturing capacity of any COPs material obtained so far. Importantly, single gas measurement based selectivity of COP-33 was comparatively better than all other COPs materials at all condition. Nevertheless, overall performance of COP-35 rate of adsorption and heat of adsorption has indicated that this material can be considered for further exploration as efficient and cheaply available solid sorbent material for CO2 capture and separation.Qatar National Research Fund, National Priorities Research Program grant (NPRP 5-499-1-088)
- …