154 research outputs found

    Gene expression analysis of livers from female B6C3F1 mice exposed to carcinogenic and non-carcinogenic doses of furan, with or without bromodeoxyuridine (BrdU) treatment

    Get PDF
    AbstractStandard methodology for identifying chemical carcinogens is both time-consuming and resource intensive. Researchers are actively investigating how new technologies can be used to identify chemical carcinogens in a more rapid and cost-effective manner. Here we performed a toxicogenomic case study of the liver carcinogen furan. Full study and mode of action details were previously published in the Journal of Toxicology and Applied Pharmacology. Female B6C3F1 mice were sub-chronically treated with two non-carcinogenic (1 and 2mg/kg bw) and two carcinogenic (4 and 8mg/kg bw) doses of furan for 21days. Half of the mice in each dose group were also treated with 0.02% bromodeoxyuridine (BrdU) for five days prior to sacrifice [13]. Agilent gene expression microarrays were used to measure changes in liver gene and long non-coding RNA expression (published in Toxicological Sciences). Here we describe the experimental and quality control details for the microarray data. We also provide the R code used to analyze the raw data files, produce fold change and false discovery rate (FDR) adjusted p values for each gene, and construct hierarchical clustering between datasets

    Toxicogenomic analysis of susceptibility to inhaled urban particulate matter in mice with chronic lung inflammation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Individuals with chronic lung disease are at increased risk of adverse health effects from airborne particulate matter. Characterization of underlying pollutant-phenotype interactions may require comprehensive strategies. Here, a toxicogenomic approach was used to investigate how inflammation modifies the pulmonary response to urban particulate matter.</p> <p>Results</p> <p>Transgenic mice with constitutive pulmonary overexpression of tumour necrosis factor (TNF)-α under the control of the surfactant protein C promoter and wildtype littermates (C57BL/6 background) were exposed by inhalation for 4 h to particulate matter (0 or 42 mg/m<sup>3 </sup>EHC-6802) and euthanized 0 or 24 h post-exposure. The low alveolar dose of particles (16 μg) did not provoke an inflammatory response in the lungs of wildtype mice, nor exacerbate the chronic inflammation in TNF animals. Real-time PCR confirmed particle-dependent increases of CYP1A1 (30–100%), endothelin-1 (20–40%), and metallothionein-II (20–40%) mRNA in wildtype and TNF mice (p < 0.05), validating delivery of a biologically-effective dose. Despite detection of striking genotype-related differences, including activation of immune and inflammatory pathways consistent with the TNF-induced pathology, and time-related effects attributable to stress from nose-only exposure, microarray analysis failed to identify effects of the inhaled particles. Remarkably, the presence of chronic inflammation did not measurably amplify the transcriptional response to particulate matter.</p> <p>Conclusion</p> <p>Our data support the hypothesis that health effects of acute exposure to urban particles are dominated by activation of specific physiological response cascades rather than widespread changes in gene expression.</p

    Cross-platform analysis of global microRNA expression technologies

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Although analysis of microRNAs (miRNAs) by DNA microarrays is gaining in popularity, these new technologies have not been adequately validated. We examined within and between platform reproducibility of four miRNA array technologies alongside TaqMan PCR arrays.</p> <p>Results</p> <p>Two distinct pools of reference materials were selected in order to maximize differences in miRNA content. Filtering for miRNA that yielded signal above background revealed 54 miRNA probes (matched by sequence) across all platforms. Using this probeset as well as all probes that were present on an individual platform, within-platform analyses revealed Spearman correlations of >0.9 for most platforms. Comparing between platforms, rank analysis of the log ratios of the two reference pools also revealed high correlation (range 0.663-0.949). Spearman rank correlation and concordance correlation coefficients for miRNA arrays against TaqMan qRT-PCR arrays were similar for all of the technologies. Platform performances were similar to those of previous cross-platform exercises on mRNA and miRNA microarray technologies.</p> <p>Conclusions</p> <p>These data indicate that miRNA microarray platforms generated highly reproducible data and can be recommended for the study of changes in miRNA expression.</p

    Meta-analysis of transcriptomic responses as a means to identify pulmonary disease outcomes for engineered nanomaterials

    Get PDF
    BACKGROUND: The increasing use of engineered nanomaterials (ENMs) of varying physical and chemical characteristics poses a great challenge for screening and assessing the potential pathology induced by these materials, necessitating novel toxicological approaches. Toxicogenomics measures changes in mRNA levels in cells and tissues following exposure to toxic substances. The resulting information on altered gene expression profiles, associated pathways, and the doses at which these changes occur, are used to identify the underlying mechanisms of toxicity and to predict disease outcomes. We evaluated the applicability of toxicogenomics data in identifying potential lung-specific (genomic datasets are currently available from experiments where mice have been exposed to various ENMs through this common route of exposure) disease outcomes following exposure to ENMs. METHODS: Seven toxicogenomics studies describing mouse pulmonary responses over time following intra-tracheal exposure to increasing doses of carbon nanotubes (CNTs), carbon black, and titanium dioxide (TiO(2)) nanoparticles of varying properties were examined to understand underlying mechanisms of toxicity. mRNA profiles from these studies were compared to the publicly available datasets of 15 other mouse models of lung injury/diseases induced by various agents including bleomycin, ovalbumin, TNFα, lipopolysaccharide, bacterial infection, and welding fumes to delineate the implications of ENM-perturbed biological processes to disease pathogenesis in lungs. RESULTS: The meta-analysis revealed two distinct clusters—one driven by TiO(2) and the other by CNTs. Unsupervised clustering of the genes showing significant expression changes revealed that CNT response clustered with bleomycin injury and bacterial infection models, both of which are known to induce lung fibrosis, in a post-exposure-time dependent manner, irrespective of the CNT’s physical-chemical properties. TiO(2) samples clustered separately from CNTs and disease models. CONCLUSIONS: These results indicate that in the absence of apical toxicity data, a tiered strategy beginning with short term, in vivo tissue transcriptomics profiling can effectively and efficiently screen new ENMs that have a higher probability of inducing pulmonary pathogenesis. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12989-016-0137-5) contains supplementary material, which is available to authorized users

    DNA methylation changes from primary cultures through senescence-bypass in Syrian hamster fetal cells initially exposed to benzo[a]pyrene

    Get PDF
    Current chemical testing strategies are limited in their ability to detect non-genotoxic carcinogens (NGTxC). Epigenetic anomalies develop during carcinogenesis regardless of whether the molecular initiating event is associated with genotoxic (GTxC) or NGTxC events; therefore, epigenetic markers may be harnessed to develop new approach methodologies that improve the detection of both types of carcinogens. This study used Syrian hamster fetal cells to establish the chronology of carcinogen-induced DNA methylation changes from primary cells until senescence-bypass as an essential carcinogenic step. Cells exposed to solvent control for 7 days were compared to naïve primary cultures, to cells exposed for 7 days to benzo[a]pyrene, and to cells at the subsequent transformation stages: normal colonies, morphologically transformed colonies, senescence, senescence-bypass, and sustained proliferation in vitro. DNA methylation changes identified by reduced representation bisulphite sequencing were minimal at day-7. Profound DNA methylation changes arose during cellular senescence and some of these early differentially methylated regions (DMRs) were preserved through the final sustained proliferation stage. A set of these DMRs (e.g., Pou4f1, Aifm3, B3galnt2, Bhlhe22, Gja8, Klf17, and L1l) were validated by pyrosequencing and their reproducibility was confirmed across multiple clones obtained from a different laboratory. These DNA methylation changes could serve as biomarkers to enhance objectivity and mechanistic understanding of cell transformation and could be used to predict senescence-bypass and chemical carcinogenicity

    Nano-risk Science: application of toxicogenomics in an adverse outcome pathway framework for risk assessment of multi-walled carbon nanotubes

    Get PDF
    BACKGROUND: A diverse class of engineered nanomaterials (ENMs) exhibiting a wide array of physical-chemical properties that are associated with toxicological effects in experimental animals is in commercial use. However, an integrated framework for human health risk assessment (HHRA) of ENMs has yet to be established. Rodent 2-year cancer bioassays, clinical chemistry, and histopathological endpoints are still considered the ‘gold standard’ for detecting substance-induced toxicity in animal models. However, the use of data derived from alternative toxicological tools, such as genome-wide expression profiling and in vitro high-throughput assays, are gaining acceptance by the regulatory community for hazard identification and for understanding the underlying mode-of-action. Here, we conducted a case study to evaluate the application of global gene expression data in deriving pathway-based points of departure (PODs) for multi-walled carbon nanotube (MWCNT)-induced lung fibrosis, a non-cancer endpoint of regulatory importance. METHODS: Gene expression profiles from the lungs of mice exposed to three individual MWCNTs with different physical-chemical properties were used within the framework of an adverse outcome pathway (AOP) for lung fibrosis to identify key biological events linking MWCNT exposure to lung fibrosis. Significantly perturbed pathways were categorized along the key events described in the AOP. Benchmark doses (BMDs) were calculated for each perturbed pathway and were used to derive transcriptional BMDs for each MWCNT. RESULTS: Similar biological pathways were perturbed by the different MWCNT types across the doses and post-exposure time points studied. The pathway BMD values showed a time-dependent trend, with lower BMDs for pathways perturbed at the earlier post-exposure time points (24 h, 3d). The transcriptional BMDs were compared to the apical BMDs derived by the National Institute for Occupational Safety and Health (NIOSH) using alveolar septal thickness and fibrotic lesions endpoints. We found that regardless of the type of MWCNT, the BMD values for pathways associated with fibrosis were 14.0–30.4 μg/mouse, which are comparable to the BMDs derived by NIOSH for MWCNT-induced lung fibrotic lesions (21.0–27.1 μg/mouse). CONCLUSIONS: The results demonstrate that transcriptomic data can be used to as an effective mechanism-based method to derive acceptable levels of exposure to nanomaterials in product development when epidemiological data are unavailable. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12989-016-0125-9) contains supplementary material, which is available to authorized users

    Thyroid hormone-regulated gene expression in juvenile mouse liver: identification of thyroid response elements using microarray profiling and in silico analyses

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Disruption of thyroid hormone signalling can alter growth, development and energy metabolism. Thyroid hormones exert their effects through interactions with thyroid receptors that directly bind thyroid response elements and can alter transcriptional activity of target genes. The effects of short-term thyroid hormone perturbation on hepatic mRNA transcription in juvenile mice were evaluated, with the goal of identifying genes containing active thyroid response elements. Thyroid hormone disruption was induced from postnatal day 12 to 15 by adding goitrogens to dams' drinking water (hypothyroid). A subgroup of thyroid hormone-disrupted pups received intraperitoneal injections of replacement thyroid hormones four hours prior to sacrifice (replacement). An additional group received only thyroid hormones four hours prior to sacrifice (hyperthyroid). Hepatic mRNA was extracted and hybridized to Agilent mouse microarrays.</p> <p>Results</p> <p>Transcriptional profiling enabled the identification of 28 genes that appeared to be under direct thyroid hormone-regulation. The regulatory regions of the genome adjacent to these genes were examined for half-site sequences that resemble known thyroid response elements. A bioinformatics search identified 33 thyroid response elements in the promoter regions of 13 different genes thought to be directly regulated by thyroid hormones. Thyroid response elements found in the promoter regions of Tor1a, 2310003H01Rik, Hect3d and Slc25a45 were further validated by confirming that the thyroid receptor is associated with these sequences <it>in vivo </it>and that it can bind directly to these sequences <it>in vitro</it>. Three different arrangements of thyroid response elements were identified. Some of these thyroid response elements were located far up-stream (> 7 kb) of the transcription start site of the regulated gene.</p> <p>Conclusions</p> <p>Transcriptional profiling of thyroid hormone disrupted animals coupled with a novel bioinformatics search revealed new thyroid response elements associated with genes previously unknown to be responsive to thyroid hormone. The work provides insight into thyroid response element sequence motif characteristics.</p

    Identification of thyroid hormone receptor binding sites in developing mouse cerebellum

    Get PDF
    Background: Thyroid hormones play an essential role in early vertebrate development as well as other key processes. One of its modes of action is to bind to the thyroid hormone receptor (TR) which, in turn, binds to thyroid response elements (TREs) in promoter regions of target genes. The sequence motif for TREs remains largely undefined as does the precise chromosomal location of the TR binding sites. A chromatin immunoprecipitation on microarray (ChIP-chip) experiment was conducted using mouse cerebellum post natal day (PND) 4 and PND15 for the thyroid hormone receptor (TR) beta 1 to map its binding sites on over 5000 gene promoter regions. We have performed a detailed computational analysis of these data.Results: By analysing a recent spike-in study, the optimal normalization and peak identification approaches were determined for our dataset. Application of these techniques led to the identification of 211 ChIP-chip peaks enriched for TR binding in cerebellum samples. ChIP-PCR validation of 25 peaks led to the identification of 16 true positive TREs. Following a detailed literature re
    corecore