Technical University of Denmark

NanoTIO2 (UV-Titan) does not induce ESTR mutations in the germline of prenatally exposed female mice

Boisen, Anne Mette Zenner; Shipley, Thomas; Hougaard, Karin Sørig; Yauk, Carole L ; Vogel, Ulla Birgitte

Published in:

Particle and Fibre Toxicology

Link to article, DOI: 10.1186/1743-8977-9-19

Publication date: 2012

Document Version
Peer reviewed version

Link back to DTU Orbit

Citation (APA):

Boisen, A. M. Z., Shipley, T., Hougaard, K. S., Yauk, C. L., & Vogel, U. B. (2012). NanoTIO2 (UV-Titan) does not induce ESTR mutations in the germline of prenatally exposed female mice. Particle and Fibre Toxicology, 9, 19. DOI: 10.1186/1743-8977-9-19

DTU Library

Technical Information Center of Denmark

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Particle and Fibre Toxicology

This Provisional PDF corresponds to the article as it appeared upon acceptance. Fully formatted PDF and full text (HTML) versions will be made available soon.

NanoTIO2 (UV-Titan) does not induce ESTR mutations in the germline of prenatally exposed female mice

Particle and Fibre Toxicology 2012, **9**:19 doi:10.1186/1743-8977-9-19

Anne M. Z. Boisen (amb@nrcwe.dk)
Thomas Shipley (thomas.shipley@hc-sc.gc.ca)
Petra Jackson (pja@nrcwe.dk)
Karin S. Hougaard (ksh@nrcwe.dk)
Hakan Wallin (hwa@nrcwe.dk)
Carole L. Yauk (Carole.Yauk@hc-sc.gc.ca)
Ulla Vogel (ubv@nrcwe.dk)

ISSN 1743-8977

Article type Short report

Submission date 9 November 2011

Acceptance date 14 May 2012

Publication date 1 June 2012

Article URL http://www.particleandfibretoxicology.com/content/9/1/19

This peer-reviewed article was published immediately upon acceptance. It can be downloaded, printed and distributed freely for any purposes (see copyright notice below).

Articles in *P&FT* are listed in PubMed and archived at PubMed Central.

For information about publishing your research in P&FT or any BioMed Central journal, go to

http://www.particleandfibretoxicology.com/authors/instructions/

For information about other BioMed Central publications go to

http://www.biomedcentral.com/

NanoTIO₂ (UV-Titan) does not induce ESTR mutations in the germline of prenatally exposed female mice

Anne Mette Zenner Boisen^{1,2} Email: amb@nrcwe.dk

Thomas Shipley³

Email: Thomas.Shipley@hc-sc.gc.ca

Petra Jackson¹

Email: pja@nrcwe.dk

Karin Sørig Hougaard¹ Email: ksh@nrcwe.dk

Håkan Wallin¹

Email: hwa@nrcwe.dk

Carole L Yauk³

Email: Carole. Yauk@hc-sc.gc.ca

Ulla Vogel^{1*,4}

* Corresponding author Email: ubv@nrcwe.dk

Abstract

Background

Particulate air pollution has been linked to an increased risk of cardiovascular disease and cancer. Animal studies have shown that inhalation of air particulates induces mutations in the male germline. Expanded simple tandem repeat (ESTR) *loci* in mice are sensitive markers of mutagenic effects on male germ cells resulting from environmental exposures; however, female germ cells have received little attention. Oocytes may be vulnerable during stages of active cell division (e.g., during fetal development). Accordingly, an increase in germline

¹ The National Research Centre for the Working Environment, Copenhagen, Denmark

² National Food Institute, Technical University of Denmark, Søborg, Denmark

³ Environmental Health Science and Research Bureau, Health Canada, Ottawa, Canada

⁴ Department of Micro- and Nanotechnology, Technical University of Denmark, Lyngby, Denmark

ESTR mutations in female mice prenatally exposed to radiation has previously been reported. Here we investigate the effects of nanoparticles on the female germline. Since pulmonary exposure to nanosized titanium dioxide (nanoTiO₂) produces a long-lasting inflammatory response in mice, it was chosen for the present study.

Findings

Pregnant C57BL/6 mice were exposed by whole-body inhalation to the nanoTiO₂ UV-Titan L181 (~42.4 mg UV-Titan/m³) or filtered clean air on gestation days (GD) 8–18. Female C57BL/6 F1 offspring were raised to maturity and mated with unexposed CBA males. The F2 descendents were collected and ESTR germline mutation rates in this generation were estimated from full pedigrees (mother, father, offspring) of F1 female mice (192 UV-Titan-exposed F2 offspring and 164 F2 controls). ESTR mutation rates of 0.029 (maternal allele) and 0.047 (paternal allele) in UV-Titan-exposed F2 offspring were not statistically different from those of F2 controls: 0.037 (maternal allele) and 0.061 (paternal allele).

Conclusions

We found no evidence for increased ESTR mutation rates in F1 females exposed *in utero* to UV-Titan nanoparticles from GD8-18 relative to control females.

Keywords

ESTR, Nanoparticles, Oogenesis, In utero

Background

Mutations in male and female gametes may lead to detrimental inherited effects in subsequent generations. Human exposure to particulate air pollution (PAP) has been shown to adversely affect germ cells in males [1]. Moreover, animal studies have demonstrated that inhalation of PAP can induce mutations in the male germline [2-6]. Airborne particles in the nanometer range deposit deep in the airways. These particles are cleared very slowly and a small fraction may translocate into the bloodstream [7,8]. Inhaled nanoparticles (NPs) are potent inducers of pulmonary inflammation and oxidative stress, which may affect the fetus indirectly during maternal exposure [9-11].

As a model of NP exposure we tested nanosized titanium dioxide (nanoTiO₂) UV-Titan, which is used in the production of paints [9,12,13]. Large quantities of nanoTiO₂ are used globally in a wide range of products. TiO₂ was previously believed to be inert, but inhaled TiO₂ has now been classified as possibly carcinogenic to humans by the International Agency for Research on Cancer [14]. TiO₂ toxicity depends on particle size, crystalline form and surface modifications [15]. Pulmonary exposure to nanoTiO₂ causes inflammation in rodents [9,16] and we recently found that a single UV-Titan instillation induced an inflammatory response in mice after 1 day [12,17]. In addition, UV-Titan particles remained in lungs 4 weeks after inhalation, causing long-lasting inflammation [9].

Expanded simple tandem repeat (ESTR) *loci* in mice exhibit high spontaneous mutation rates enabling the study of induced germline mutations following environmental exposures.

Radiation, air particulates, and a number of chemicals have been shown to increase ESTR mutations in male germ cells [2,5,18,19]. Very limited data exist on induced mutations in female germ cells, which have previously been considered highly resistant to genotoxicity [20]. However, oocytes could be vulnerable during stages of active cell division, i.e. during fetal development [20,21]. A recent study showed that prenatal exposure to 1 Gy of acute irradiation on GD12 resulted in a 1.94-fold increase in ESTR mutations in the offspring of irradiated female mice [22,23].

We hypothesized that prenatal exposure to NPs will affect female germline ESTR mutation frequency during stages of active cell division, similar to what has been found for male germline cells [1]. The present study investigates TiO₂ nanoparticle-induced effects on female germline DNA by exposing pregnant female mice (P) to nanoTiO₂ or clean filtered air *via* inhalation and subsequently mating their offspring (F1) with unexposed males. The observed F1 female germline ESTR mutation frequency was calculated by comparing allele size in the F2 offspring to their mother's allele size to quantify repeat gains and losses.

Methods

Animals and exposure

All mice (Figure 1) were housed under controlled environmental conditions [9]. Generation P consisted of time-mated, nulliparous mice (C57BL/6JBomTac) exposed by whole-body inhalation to UV-Titan L181 (Kemira, Pori, Finland), a rutile TiO₂ (70.8 wt.%) modified with 1.17 wt% zirconium, 12.01 wt% silicon, 0.60 wt% sodium oxide and 4.58 wt% aluminium. UV-Titanium is coated with polyalcohol adding to the remaining wt%. Primary particle size was 20.6 nm and surface area (BET) 107.7 m²/g. The particle number concentration in the exposure atmosphere was $1.70 \pm 0.20 \cdot 10^6$ /cm³. The major particle size-mode was ~100 nm (geometric mean number diameter 97 nm). The mass-size distribution was strongly dominated by µm-size particles (geometric mean 3.2 µm) and 75% of the mass were represented by particles larger than 1.6 µm [9]. A detailed description of the physicochemical characteristics of particle preparation, sample analysis and exposure monitoring of UV-Titan is reported in [9]. Mice were exposed to ~42.4 mg UV-Titan/m³ or filtered clean air on GD8-18, one h/day as described [9]. Generation P gave birth to generation F1 (C57BL/6JBomTac). At 19 weeks of age, 26 prenatally exposed F1 females (13 controls and 12 TiO₂-exposed) were mated with unexposed CBA/J (Charles River, Sulzfeld, Germany) to produce generation F2 (C57BL/6 x CBA/J). A total of 450 F2 offspring (Figure 1) were collected for the present study. Mutation analysis and scoring were successful for 388 offspring. Procedures complied with EC Directive 86/609/EEC and Danish regulations on experiments with animals (Permission 2006/561-1123).

Figure 1 Overview of the pedigree study. Circles and squares represent female and male mice respectively. Grey symbols represent exposed animals and their descendants. White squares represent non-exposed CBA mates. Generation P pregnant mothers were exposed: 13 TiO₂ exposed and 12 Controls. 246 F2 offspring were collected from TiO₂ and 187 from Controls (number of successfully analyzed offspring 192 and 164, respectively)

DNA extraction and mutation analysis

F1 parents were euthanized after breeding, F2 offspring on postnatal day (PND) 2–7 or at maturity (PND80). F1 and F2 tail tissue was flash frozen in cryotubes (NUNC) in liquid N₂ and stored at −80°C. DNA was extracted by phenol-chloroform extraction and ESTR analysis was performed as in [2]. Briefly, 25 μg of mouse tail DNA was digested with *AluI* (New England BioLabs, Pickering, Ont.) at 37° C overnight. F1 and F2 DNA samples were run on 40 cm long 0.8% agarose gels (SeaKem LE) for 48 hours in a cooled chamber at 130 V along with a 1 Kb ladder (Invitrogen, Burlington, Ont.). DNA was transferred to a nylon membrane by vacuum blotting (GE Osmonics, Minnetonka, MN) and hybridized to ³²P-labeled *Ms6-hm* and *Hm2* probes [2]. F2 bands showing a shift of at least 1 mm relative to the F1 progenitor allele were scored as mutants. Bands were scored independently by 3 observers blinded to exposure status. Mutation rates were determined as the number of mutant bands per total number of bands scored (Table 1) and compared using a one-tailed Fisher's exact test.

Table 1 Summary of ESTR mutation rates in F2 offspring of prenatally exposed female C57BL/6 mice

Group	probe	N (F2 offspring)	Mutant bands		Mutation rate ± SEM (P value ^a)	
			Paternal origin	Maternal origin	Paternal origin	Maternal origin
Female controls	Ms6- hm	164	11	5	0.0671 ± 0.0002	0.0305 ± 0.0002
Female controls	Hm-2	164	9	7	0.0549 ± 0.0004	0.0427 ± 0.0004
Female controls	Total	164	20	12	0.0610 ± 0.0028	0.0366 ± 0.0030
Female TiO ₂ exposed	Ms6- hm	192	10	4	0.0521 ± 0.0004	0.0208 ± 0.0002
Female TiO ₂ exposed	Hm-2	192	8	7	0.0417 ± 0.0004	0.0365 ± 0.0003
Female TiO ₂ exposed	Total	192	18	11	$0.0469 \pm 0.0107 \ (P = 0.84)$	$0.0286 \pm 0.0133 \ (P = 0.79)$

a Fisher's exact test 1-tailed

Results and discussion

F1 females were prenatally exposed to UV-Titan by maternal inhalation of 42.4 mg UV-Titan/m³ 1 hour/day on GD8-18 (Figure 1). 164 and 192 offspring from control and exposed females, respectively, were scored. Thus, a total of 328 and 384 inherited bands were scored per group. The observed mutation rate in germ cells of UV Titan-exposed F1 females was not significantly different from controls (Table 1). The *Ms6-hm* and *Hm-2* mutation rates in control females were similar to those found for females in other studies using the same mouse strain [2,19]. Furthermore, the number of offspring, sex-ratio and time to birth of the first F2 litter did not differ between groups, suggesting that UV-Titan did not affect viability of the F2 offspring (data not shown). Absence of effect is therefore not due to lower viability of affected offspring. Mutations in ESTRs should not affect offspring fitness since these *loci* do not have known functions.

ESTR mutations have been suggested to be induced *via* polymerase pausing resulting from the presence of epigenetic changes or DNA damage such as oxidative stress, strand breaks or adducts elsewhere in the genome rather than by direct DNA damage [5]. We have reported that the inhalation of a total dose of 840 µg UV-Titan per animal at GD8-18 induced persistent inflammation in the lungs of the time-mated P generation (Figure 1) [9,24]. Furthermore, 476 genes were found to be differentially expressed in the liver of newborn F1 generation females prenatally exposed to UV-Titan. We hypothesize that the transfer of

inflammatory cytokines across the placenta may have caused this differential gene expression [10] since no TiO₂ was detected in maternal liver, mother's milk or offspring liver [9].

ESTR mutation analysis is a sensitive method, enabling analysis under realistic exposure scenarios. An *a priori* power analysis showed that group size in the present study provided a 77% chance of detecting a 2-fold increase in ESTR mutations at the 5% significance level. The exposure and the estimated inhaled dose of 840 μg used in this study is comparable to the permissible exposure limit by Danish Regulation and the exposure route (inhalation) is also relevant to environmental exposure [9]. As little as 54 μg UV-Titan can induce inflammation in mouse lungs after one day [12,17]. Female germ cells enter meiotic prophase on ~ GD13.5 [21]. In the present study female mice were prenatally exposed from GD8-18 ensuring that the period of mitotic germ cell division was targeted; these mothers were exposed to ~458 μg prior to GD13. Consequently, a high degree of inflammation was likely to be present at GD13.5, when oocytes cease to be susceptible to ESTR mutations [21,22].

In parallel with the present study (in the same laboratory and time period), ESTR germline mutations in male and female mice prenatally exposed to diesel exhaust particles (DEP) by inhalation were quantified [2]. Male germ cell mutation rates were significantly increased following exposure to DEP and may thus be regarded as a positive control for the ability to detect induced ESTR mutation. ESTR mutation rates were not significantly increased in germ cells of females prenatally exposed to DEP. To our knowledge, this is the only other study, which has investigated chemically induced ESTR mutations in prenatally exposed females. A recent study showed that dividing oocytes are susceptible to mutations *in vivo*. Prenatal exposure to 1 Gy of acute irradiation on GD12 resulted in a 1.94-fold increase in the ESTR mutation rate [22].

NanoTiO₂ can induce DNA strand breaks and carcinogenic effects in vivo [11,25,26]. We recently reported that UV-Titan inhalation did not increase DNA strand breaks in the P or F1 generations [10], suggesting that genotoxic effects in offspring are negligible. Correspondingly, in the study of prenatal DEP exposure by [2], which showed ESTR instability in male offspring, the exposure also failed to increase DNA strand breaks in liver from newborns [27]. Epigenetic changes have been suggested as the underlying mechanism of ESTR instability [5,22]. A recent study found DNA deletions in mice prenatally exposed to nanoTiO₂ [26]. However, the small effective sample size and the very large maternal dose used in the study hamper interpretation. The results on nanoTiO₂ induced mutations and genotoxicity are conflicting [10,15,26]. The various types of commercially available nanoTiO₂ also make it difficult to generalize. It is possible that NPs with very active surface chemistry, which produce more reactive oxygen species (ROS) or a large inflammatory response, could induce germline mutations. In the present study we have only assessed the effects of a single type of TiO₂ NP. We are currently investigating the effects of prenatal exposure to nanosized carbon black Printex90, a more efficient generator of ROS than both DEP and nanoTiO₂ [12] to further address the question of female susceptibility to NPs. The present study indicates that prenatal exposure to nanoTiO₂ does not affect female germline ESTR mutation frequency.

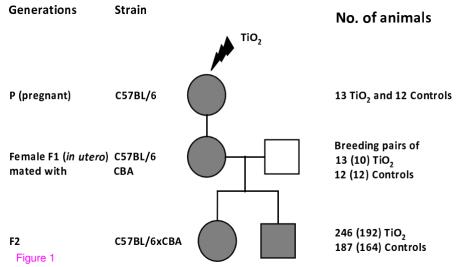
Competing interests

The authors declare that they have no competing interests.

Authors' contributions

AMZB was substantially involved in the design of the study, collected animal tissue, processed samples and performed the electrophoresis, blot probing, image processing, mutation scoring, statistical analysis and drafted the manuscript. TS re-probed and developed images for a large portion of blots and revised the manuscript. PJ exposed the P generation mice, assigned F1 offspring for the current study and revised the manuscript critically. KSH was project manager of the study and revised the manuscript critically. HW was substantially involved in the design of the study and revised the manuscript critically. CLY was substantially involved in the design of the study, scored mutations and revised the manuscript critically. UBV was substantially involved in the design of the study and revised the manuscript critically. All authors read and approved the final version of the manuscript.

Acknowledgements


The authors gratefully acknowledge statistical support from Andrew Williams and technical assistance from Michael Guldbrandsen, Gitte Kristiansen and Colin Davis. This work was supported by the Danish Centre for Nanosafety from the Danish Working Environment Research Fund.

References

- 1. Sram RJ, Binkova B, Rossner P, Rubes J, Topinka J, Dejmek J: **Adverse reproductive outcomes from exposure to environmental mutagens.** *Mutat Res* 1999, **428:**203–215.
- 2. Ritz C, Ruminski W, Hougaard KS, Wallin H, Vogel U, Yauk CL: **Germline mutation rates in mice following in utero exposure to diesel exhaust particles by maternal inhalation.** *Mutat Res* 2011, **712:**55–58.
- 3. Somers CM, McCarry BE, Malek F, Quinn JS: **Reduction of particulate air pollution lowers the risk of heritable mutations in mice.** *Science* 2004, **304**:1008–1010.
- 4. Somers CM, Cooper DN: Air pollution and mutations in the germline: are humans at risk? *Hum Genet* 2009, **125:**119–130.
- 5. Yauk C, Polyzos A, Rowan-Carroll A, Somers CM, Godschalk RW, Van Schooten FJ, Berndt ML, Pogribny IP, Koturbash I, Williams A, Douglas GR, Kovalchuk O: **Germ-line mutations, DNA damage, and global hypermethylation in mice exposed to particulate air pollution in an urban/industrial location.** *Proc Natl Acad Sci U S A* 2008, **105:**605–610.
- 6. Yauk CL, Fox GA, McCarry BE, Quinn JS: **Induced minisatellite germline mutations** in herring gulls (Larus argentatus) living near steel mills. *Mutat Res* 2000, **452:**211–218.
- 7. Kreyling WG, Semmler-Behnke M, Seitz J, Scymczak W, Wenk A, Mayer P, Takenaka S, Oberdorster G: Size dependence of the translocation of inhaled iridium and carbon nanoparticle aggregates from the lung of rats to the blood and secondary target organs. *Inhal Toxicol* 2009, **21**(Suppl 1):55–60.

- 8. Sadauskas E, Jacobsen NR, Danscher G, Stoltenberg M, Vogel U, Larsen A, Kreyling W, Wallin H: **Biodistribution of gold nanoparticles in mouse lung following intratracheal instillation.** *Chem Cent J* 2009. **3:**16.
- 9. Hougaard KS, Jackson P, Jensen KA, Sloth JJ, Loschner K, Larsen EH, Birkedal RK, Vibenholt A, Boisen AM, Wallin H, Vogel U: **Effects of prenatal exposure to surface-coated nanosized titanium dioxide (UV-Titan).** A study in mice. *Part Fibre Toxicol* 2010, 7:16.
- 10. Jackson P, Halappanavar S, Hougaard KS, Williams A, Madsen AM, Lamson JS, Andersen O, Yauk C, Wallin H, Vogel U: **Maternal inhalation of surface-coated nanosized titanium dioxide (UV-Titan) in C57BL/6 mice: Effects in prenatally exposed offspring on hepatic DNA damage and gene expression.** *Nanotoxicology* 2012, doi:10.3109/17435390.2011.633715. in press.
- 11. Oberdorster G, Ferin J, Lehnert BE: **Correlation between particle size, in vivo particle persistence, and lung injury.** *Environ Health Perspect* 1994, **102**(Suppl 5):173–179.
- 12. Saber AT, Jensen KA, Jacobsen NR, Birkedal R, Mikkelsen L, Moller P, Loft S, Wallin H, Vogel U: **Inflammatory and genotoxic effects of nanoparticles designed for inclusion in paints and lacquers.** *Nanotoxicology* 2012, doi:10.3109/17435390.2011.587900. in press.
- 13. Saber AT, Koponen IK, Jensen KA, Jacobsen NR, Mikkelsen L, Moller P, Loft S, Vogel U, Wallin H: **Inflammatory and genotoxic effects of sanding dust generated from nanoparticle-containing paints and lacquers.** *Nanotoxicology* 2012, doi:10.3109/17435390.2011.620745. in press.
- 14. Baan R, Straif K, Grosse Y, Secretan B, El GF, Cogliano V: Carcinogenicity of carbon black, titanium dioxide, and talc. *Lancet Oncol* 2006, **7:**295–296.
- 15. Johnston HJ, Hutchison GR, Christensen FM, Peters S, Hankin S, Stone V: Identification of the mechanisms that drive the toxicity of TiO(2)particulates: the contribution of physicochemical characteristics. *Part Fibre Toxicol* 2009, **6:**33.
- 16. Bermudez E, Mangum JB, Wong BA, Asgharian B, Hext PM, Warheit DB, Everitt JI: **Pulmonary responses of mice, rats, and hamsters to subchronic inhalation of ultrafine titanium dioxide particles.** *Toxicol Sci* 2004, **77:**347–357.
- 17. Saber AT, Jacobsen NR, Mortensen A, Szarek J, Jackson P, Madsen AM, Jensen KA, Koponen IK, Brunborg G, Gutzkow KB, Vogel U, Wallin H: **Nanotitanium dioxide toxicity in mouse lung is reduced in sanding dust from paint.** *Part Fibre Toxicol* 2012, **9:**4.
- 18. Dubrova YE, Plumb M, Brown J, Fennelly J, Bois P, Goodhead D, Jeffreys AJ: **Stage specificity, dose response, and doubling dose for mouse minisatellite germ-line mutation induced by acute radiation.** *Proc Natl Acad Sci U S A* 1998, **95**:6251–6255.
- 19. Hedenskog M, Sjogren M, Cederberg H, Rannug U: Induction of germline-length mutations at the minisatellites PC-1 and PC-2 in male mice exposed to polychlorinated biphenyls and diesel exhaust emissions. *Environ Mol Mutagen* 1997, **30:**254–259.

- 20. Adler ID, Carere A, Eichenlaub-Ritter U, Pacchierotti F: **Gender differences in the induction of chromosomal aberrations and gene mutations in rodent germ cells.** *Environ Res* 2007, **104:**37–45.
- 21. McLaren A: Germ and somatic cell lineages in the developing gonad. *Mol Cell Endocrinol* 2000, **163:**3–9.
- 22. Barber RC, Hardwick RJ, Shanks ME, Glen CD, Mughal SK, Voutounou M, Dubrova YE: **The effects of in utero irradiation on mutation induction and transgenerational instability in mice.** *Mutat Res* 2009, **664:**6–12.
- 23. Bouzeid Ali HE, Barber RC, Dubrova YE: **The effects of maternal irradiation during adulthood on mutation induction and transgenerational instability in mice.** *Mutat Res* 2012, **732:**21–25.
- 24. Halappanavar S, Jackson P, Williams A, Jensen KA, Hougaard KS, Vogel U, Yauk CL, Wallin H: **Pulmonary response to surface-coated nanotitanium dioxide particles includes induction of acute phase response genes, inflammatory cascades, and changes in microRNAs: A toxicogenomic study.** *Environ Mol Mutagen* 2011, **52:**425–439.
- 25. Borm PJ, Schins RP, Albrecht C: **Inhaled particles and lung cancer**, **part B: paradigms and risk assessment.** *Int J Cancer* 2004, **110:**3–14.
- 26. Trouiller B, Reliene R, Westbrook A, Solaimani P, Schiestl RH: **Titanium dioxide** nanoparticles induce **DNA** damage and genetic instability in vivo in mice. *Cancer Res* 2009, **69:**8784–8789.
- 27. Hougaard KS, Jensen KA, Nordly P, Taxvig C, Vogel U, Saber AT, Wallin H: **Effects of prenatal exposure to diesel exhaust particles on postnatal development, behavior, genotoxicity and inflammation in mice.** *Part Fibre Toxicol* 2008, **5:**3.

