203 research outputs found

    Takotsubo Cardiomyopathy as a Neurocardiogenic Injury after Subarachnoid Hemorrhage: Hemodynamics and Fluid Management

    Get PDF
    Takotsubo cardiomyopathy (TCM) is a life-threatening systemic disorder that may occur early after aneurysmal subarachnoid hemorrhage (SAH), but precise hemodynamics and fluid management remain unclear. Although TCM is often regarded as a reversible or self-limited phenomenon, it contributes significantly to morbidity and mortality of SAH patients, especially when it is complicated with other neurogenic injuries such as severe left ventricular dysfunction, pulmonary edema, and pneumonia. The purpose of this chapter is to introduce the current practice in intensive hemodynamic monitoring and goal-directed fluid management of post-SAH TCM using advanced hemodynamic devices based on our institutional protocol and the relevant literature and to evaluate their effects on clinical outcomes

    A comprehensive analysis of the correlations between resting-state oscillations in multiple-frequency bands and big five traits

    Get PDF
    Recently, the association between human personality traits and resting-state brain activity has gained interest in neuroimaging studies. However, it remains unclear if Big Five personality traits are represented in frequency bands (~0.25 Hz) of resting-state functional magnetic resonance imaging (fMRI) activity. Based on earlier neurophysiological studies, we investigated the correlation between the five personality traits assessed by the NEO Five-Factor Inventory (NEO-FFI), and the fractional amplitude of low-frequency fluctuation (fALFF) at four distinct frequency bands (slow-5 (0.01–0.027 Hz), slow-4 (0.027–0.073 Hz), slow-3 (0.073–0.198 Hz) and slow-2 (0.198–0.25 Hz)). We enrolled 835 young subjects and calculated the correlations of resting-state fMRI signals using a multiple regression analysis. We found a significant and consistent correlation between fALFF and the personality trait of extraversion at all frequency bands. Furthermore, significant correlations were detected in distinct brain regions for each frequency band. This finding supports the frequency-specific spatial representations of personality traits as previously suggested. In conclusion, our data highlight an association between human personality traits and fALFF at four distinct frequency bands

    The Effects of Family Socioeconomic Status on Psychological and Neural Mechanisms as Well as Their Sex Differences

    Get PDF
    Family socioeconomic status (SES) is an important factor that affects an individual’s neural and cognitive development. The two novel aims of this study were to reveal (a) the effects of family SES on mean diffusivity (MD) using diffusion tensor imaging given the characteristic property of MD to reflect neural plasticity and development and (b) the sex differences in SES effects. In a study cohort of 1,216 normal young adults, we failed to find significant main effects of family SES on MD; however, previously observed main effects of family SES on regional gray matter volume and fractional anisotropy (FA) were partly replicated. We found a significant effect of the interaction between sex and family income on MD in the thalamus as well as significant effects of the interaction between sex and parents’ educational qualification (year’s of education) on MD and FA in the body of the corpus callosum as well as white matter areas between the anterior cingulate cortex and lateral prefrontal cortex. These results suggest the sex-specific associations of family SES with neural and/or cognitive mechanisms particularly in neural tissues in brain areas that play key roles in basic information processing and higher-order cognitive processes in a way females with greater family SES level show imaging outcome measures that have been associated with more neural tissues (such as greater FA and lower MD) and males showed opposite

    Effects of time-compressed speech training on multiple functional and structural neural mechanisms involving the left superior temporal gyrus

    Get PDF
    Time-compressed speech is an artificial form of rapidly presented speech. Training with time-compressed speech (TCSSL) in a second language leads to adaptation toward TCSSL. Here, we newly investigated the effects of 4 weeks of training with TCSSL on diverse cognitive functions and neural systems using the fractional amplitude of spontaneous low-frequency fluctuations (fALFF), resting-state functional connectivity (RSFC) with the left superior temporal gyrus (STG), fractional anisotropy (FA), and regional gray matter volume (rGMV) of young adults by magnetic resonance imaging. There were no significant differences in change of performance of measures of cognitive functions or second language skills after training with TCSSL compared with that of the active control group. However, compared with the active control group, training with TCSSL was associated with increased fALFF, RSFC, and FA and decreased rGMV involving areas in the left STG. These results lacked evidence of a far transfer effect of time-compressed speech training on a wide range of cognitive functions and second language skills in young adults. However, these results demonstrated effects of time-compressed speech training on gray and white matter structures as well as on resting-state intrinsic activity and connectivity involving the left STG, which plays a key role in listening comprehension

    Effects of time-compressed speech training on multiple functional and structural neural mechanisms involving the left superior temporal gyrus

    Get PDF
    Time-compressed speech is an artificial form of rapidly presented speech. Training with time compressed speech in a second language leads to adaptation toward time-compressed speech in a second language and toward time compressed speech in different languages. However, the effects of training with time-compressed speech of a second language (TCSSL) on diverse cognitive functions and neural mechanisms beyond time compressed speech-related activation are unknown. We investigated the effects of 4 weeks of training with TCSSL on the fractional amplitude of spontaneous low-frequency fluctuations (fALFF) of 0.01–0.08 Hz, resting-state functional connectivity (RSFC) with the left superior temporal gyrus (STG), fractional anisotropy (FA), and regional gray matter volume (rGMV) of young adults by magnetic resonance imaging. There were no significant differences in change of performance of measures of cognitive functions or second language skills after training with TCSSL compared with that of the active control group. However, compared with the active control group, training with TCSSL was associated with increased fALFF, RSFC, and FA and decreased rGMV involving areas in the left STG. These results lacked evidence of a far transfer effect of time compressed speech training on a wide range of cognitive functions and second language skills in young adults. However, these results demonstrated effects of time compressed speech training on gray and white matter structures as well as on resting-state intrinsic activity and connectivity involving the left STG, which plays a key role in listening comprehension

    Lenticular nucleus correlates of general self-efficacy in young adults

    Get PDF
    General self-efficacy (GSE) is an important factor in education, social participation, and medical treatment. However, the only study that has investigated the direct association between GSE and a neural correlate did not identify specific brain regions, rather only assessed brain structures, and included older adult subjects. GSE is related to motivation, physical activity, learning, the willingness to initiate behaviour and expend effort, and adjustment. Thus, it was hypothesized in the present study that the neural correlates of GSE might be related to changes in the basal ganglia, which is a region related to the abovementioned self-efficacy factors. This study aimed to identify the brain structures associated with GSE in healthy young adults (n = 1204, 691 males and 513 females, age 20.7 ± 1.8 years) using regional grey matter density and volume (rGMD and rGMV), fractional anisotropy (FA) and mean diffusivity (MD) analyses of magnetic resonance imaging (MRI) data. The findings showed that scores on the GSE Scale (GSES) were associated with a lower MD value in regions from the right putamen to the globus pallidum; however, there were no significant association between GSES scores and regional brain structures using the other analyses (rGMD, rGMV, and FA). Thus, the present findings indicated that the lenticular nucleus is a neural correlate of GSE

    Correlations among Brain Gray Matter Volumes, Age, Gender, and Hemisphere in Healthy Individuals

    Get PDF
    To determine the relationship between age and gray matter structure and how interactions between gender and hemisphere impact this relationship, we examined correlations between global or regional gray matter volume and age, including interactions of gender and hemisphere, using a general linear model with voxel-based and region-of-interest analyses. Brain magnetic resonance images were collected from 1460 healthy individuals aged 20–69 years; the images were linearly normalized and segmented and restored to native space for analysis of global gray matter volume. Linearly normalized images were then non-linearly normalized and smoothed for analysis of regional gray matter volume. Analysis of global gray matter volume revealed a significant negative correlation between gray matter ratio (gray matter volume divided by intracranial volume) and age in both genders, and a significant interaction effect of age × gender on the gray matter ratio. In analyzing regional gray matter volume, the gray matter volume of all regions showed significant main effects of age, and most regions, with the exception of several including the inferior parietal lobule, showed a significant age × gender interaction. Additionally, the inferior temporal gyrus showed a significant age × gender × hemisphere interaction. No regional volumes showed significant age × hemisphere interactions. Our study may contribute to clarifying the mechanism(s) of normal brain aging in each brain region
    • …
    corecore