12 research outputs found

    High density mapping systems for SRF cavities

    Get PDF
    20th International Conference on RF Superconductivity (SRF 2021)In order to evaluate the performance of a superconducting cavity, we are developing a mapping system to measure the distribution of cavity temperature, field emission X-rays, and trapped magnetic flux with high positional resolution. In order to construct a system with high positional resolution, a large number of sensors are required. However, as the number of sensors increases, so does the amount of wiring, which increases the complexity of the wiring in the cryogenic apparatus, and also increases the heat transfer through the wiring, which disturb efficient operation of cavity tests. We are developing an efficient mapping system with a multiplexer that scans the readout signal on the same circuit as the sensor in the cryogenic dewar where the cavity test is conducted. In this presentation, we report the outline and test results of the mapping system under developmen

    Technical Note : Range verification of pulsed proton beams from fixed-field alternating gradient accelerator by means of time-of-flight measurement of ionoacoustic waves

    Get PDF
    Purpose: Ionoacoustics is one of the promising approaches to verify the beam range in proton therapy. However, the weakness of the wave signal remains a main hindrance to its application in clinics. Here we studied the potential use of a fixed-field alternating gradient accelerator (FFA), one of the accelerator candidates for future proton therapy. For such end, magnitude of the pressure wave and range accuracy achieved by the short-pulsed beam of FFA were assessed, using both simulation and experimental procedure. Methods: A 100 MeV proton beam from the FFA was applied on a water phantom, through the acrylic wall. The beam range measured by the Bragg peak (BP)-ionization chamber (BPC) was 77.6 mm, while the maximum dose at BP was estimated to be 0.35 Gy/pulse. A hydrophone was placed 20 mm downstream of the BP, and signals were amplified and stored by a digital oscilloscope, averaged, and low-pass filtered. Time-of-flight (TOF) and two relative TOF values were analyzed in order to determine the beam range. Furthermore, an acoustic wave transport simulation was conducted to estimate the amplitude of the pressure waves. Results: The range calculated when using two relative TOF was 78.16 +/- 0.01 and 78.14 +/- 0.01 mm, respectively, both values being coherent with the range measured by the BPC (the difference was 0.5-0.6 mm). In contrast, utilizing the direct TOF resulted in a range error of 1.8 mm. Fivefold and 50-fold averaging were required to suppress the range variation to below 1 mm for TOF and relative TOF measures, respectively. The simulation suggested the magnitude of pressure wave at the detector exceeded 7 Pascal. Conclusion: A submillimeter range accuracy was attained with a pulsed beam of about 21 ns from an FFA, at a clinical energy using relative TOF. To precisely quantify the range with a single TOF measurement, subsequent improvement in the measuring system is required

    Measurement of double-differential neutron yields for iron, lead, and bismuth induced by 107-MeV protons for research and development of accelerator-driven systems

    No full text
    For the research and development of accelerator-driven systems (ADSs) and fundamental ADS reactor physics research using the Kyoto University Critical Assembly combined with the fixed-field alternating gradient (FFAG) accelerator, we are conducting a series of experiments on double-differential neutron yields using the FFAG accelerator at Kyoto University. This paper presents an overview of the experiments together with preliminary results

    Design and Construction of an Imaging beamline at the Nagoya University Neutron Source

    No full text
    The Nagoya University Accelerator driven Neutron Source (NUANS) is constructed at the main campus of the Nagoya University. The electrostatic accelerator is used with the maximum proton energy and intensity of 2.8MeV, 15mA(42kW) respectively. Two neutron beamlines are designed at NUANS. The BL1 is dedicated to BNCT development. The BL2 is designed for research and development for neutron devices and neutron imaging. The neutrons used for the BL2 are generated by using the (p, n) reaction from a thin beryllium target. We constructed a compact target station for the BL2 and measured the neutron transmission image

    Measurement of 107-MeV proton-induced double-differential thick target neutron yields for Fe, Pb, and Bi using a fixed-field alternating gradient accelerator at Kyoto University

    No full text
    Double-differential thick target neutron yields (TTNYs) for Fe, Pb, and Bi targets induced by 107-MeV protons were measured using the fixed-field alternating gradient accelerator at Kyoto University for the research and development of accelerator-driven systems (ADSs) and fundamental ADS reactor physics research at the Kyoto University Critical Assembly (KUCA). Note that TTNYs were obtained with the time-of-flight method using a neutron detector system comprising eight neutron detectors; each detector has a small EJ-301 liquid organic scintillator and photomultiplier tube. The TTNYs obtained were compared with calculation results using Monte Carlo-based spallation models (i.e. INCL4.6/GEM, Bertini/GEM, JQMD/GEM, and JQMD/SMM/GEM) and the evaluated high-energy nuclear data library, i.e. JENDL-4.0/HE, implemented in the particle and heavy ion transport code system (PHITS). All models, including JENDL-4.0/HE, failed to predict high-energy peaks at a detector angle of 5∘. Comparing the energy- and angle-integrated spallation neutron yields at energies of ≤20 MeV estimated using the measured TTNYs and the PHITS indicated that INCL4.6/GEM would be suitable for the Monte Carlo transport simulation of ADS reactor physics experiments at the KUCA.</p
    corecore