17 research outputs found

    Reduced serum level of leukocyte cell-derived chemotaxin 2 is associated with the presence of diabetic retinopathy

    Get PDF
    AbstractBackgroundVascular endothelial growth factor (VEGF) signaling is an important pathway in the development of diabetic retinopathy (DR). A recent report showed that leukocyte cell-derived chemotaxin 2 (LECT2) suppresses the VEGF signaling in endothelial cells. However, the clinical relevance of LECT2 in DR is unknown. This study aimed to investigate serum LECT2 levels and the presence of DR.MethodsThe study included 230 people with type 2 diabetes mellitus (DM), 95 with DR and 135 without DR. Serum LECT2 levels were measured using an enzyme-linked immunosorbent assay. Data were evaluated using Spearman's rank correlation, univariate and multivariate logistic regression.ResultsSerum LECT2 levels were significantly lower in participants with DM having DR than in those not having DR (35.6±14.9ng/ml vs. 44.5±17.6ng/ml, P<0.001). Spearman's rank correlation analysis revealed a significant association between serum LECT2 levels and the presence of DR (P<0.001). Multiple regression analysis revealed that serum LECT2 levels were independently related to DR (P<0.001).ConclusionsThese findings indicated that serum LECT2 level is negatively associated with the presence of DR and suggest that low circulating LECT2 level is a risk factor for DR

    Identification of tuberculosis-associated proteins in whole blood supernatant

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Biological parameters are useful tools for understanding and monitoring complicated disease processes. In this study, we attempted to identify proteins associated with active pulmonary tuberculosis (TB) using a proteomic approach.</p> <p>Methods</p> <p>To assess TB-associated changes in the composition of human proteins, whole blood supernatants were collected from patients with active TB and healthy control subjects. Two-dimensional difference gel electrophoresis (2D-DIGE) was performed to analyze proteins with high molecular weights (approximately >20 kDa). Baseline protein levels were initially compared between patients with active TB and control subjects. Possible changes of protein patterns in active TB were also compared <it>ex vivo </it>between whole blood samples incubated with <it>Mycobacterium tuberculosis </it>(<it>Mtb</it>)-specific antigens (stimulated condition) and under unstimulated conditions. Immunoblot and enzyme-linked immunosorbent assays (ELISA) were performed to confirm differences in identified proteins.</p> <p>Results</p> <p>Under the baseline condition, we found that the levels of retinol-binding protein 4 (RBP4), fetuin-A (also called α-HS-glycoprotein), and vitamin D-binding protein differed between patients with active TB and control subjects on 2D gels. Immunoblotting results confirmed differential expression of RBP4 and fetuin-A. ELISA results further confirmed significantly lower levels of these two proteins in samples from patients with active TB than in control subjects (<it>P </it>< 0.0001). <it>Mtb</it>-specific antigen stimulation <it>ex vivo </it>altered clusterin expression in whole blood samples collected from patients with active TB.</p> <p>Conclusions</p> <p>We identified TB-associated proteins in whole blood supernatants. The dynamics of protein expression during disease progression may improve our understanding of the pathogenesis of TB.</p

    The phosphorylation of sorting nexin 5 at serine 226 regulates retrograde transport and macropinocytosis.

    No full text
    Sorting nexin 5 (SNX5), a member of sorting nexin family, plays an important role in membrane trafficking, including the retrograde trafficking of the cation independent mannose 6-phosphate receptor (CI-M6PR) and macropinocytosis. Using ESI-LCMS/MS analysis, we confirmed that SNX5 serine 226 is phosphorylated. Since SNX5 forms heterodimers with SNX1 or SNX2, we examined the effect of phosphorylation at S226 on the heterodimer formations. Wild-type and mutants of SNX5, in which S226 was mutated to a glutamic acid or an alanine, were expressed in 8505C cells. In pull-down assays using SNX5 as bait, only the S226E mutant failed to precipitate both SNX1 and SNX2. Confocal microscopy data indicated that the wild type and S226A mutant were colocalized with SNX1 and SNX2 in endosomes, but the S226E was not. SNX5 and SNX6 support each other's functions and are involved with CI-M6PR retrograde trafficking. In SNX5 and SNX6 double knockdown cells, CI-M6PR was dispersed and colocalized with the endosomal marker EEA1. In a rescue experiment using SNX5 mutants, the S226A rescued CI-M6PR localization, similar to control cells, but S226E did not. Furthermore, the decrease in the uptake of dextran by macropinocytosis in SNX5 knockdown cells was recovered by the expression of rescue-wild type or S226A mutant, but not by the rescue-S226E mutant. These observations indicate that SNX5 constitutive phosphorylation that mimics the mutant S226E decreases the active SNX5 in these cells. The phosphorylation of SNX5 regulates the dimerization with SNX1 or SNX2, and this suggests that it controls membrane trafficking and protein sorting

    Independent risk factors of rapid glomerular filtration rate decline in patients with type 2 diabetes with preserved kidney function and normoalbuminuria: A multicenter cohort study

    No full text
    Abstract Aims/Introduction Research on the incidence and underlying mechanisms of rapid renal function decline in patients with type 2 diabetes mellitus with preserved renal function and normoalbuminuria is limited. This study aimed to investigate the involvement of hemoglobin level as a risk factor for rapid decliners among patients with type 2 diabetes with preserved renal function and normoalbuminuria. Materials and Methods This was a retrospective observational study of 242 patients with type 2 diabetes with a baseline estimated glomerular filtration rate of ≥60 mL/min/1.73 m2 and normoalbuminuria (1 year. The annual rate of estimated glomerular filtration rate decline during the follow‐up period was calculated using least square regression analysis; rapid decliners defined at ≥3.3%/year. Risk factors associated with rapid decliners were identified using a logistic regression analysis of variables previously identified as risk factors of rapid decliners. Results The median follow‐up period was 6.7 years, and 34 patients showed rapid decliners. On multivariate analysis, lower baseline hemoglobin level was a risk factor of rapid decliners (odds ratio 0.69, 95% confidence interval 0.47–0.99; P = 0.045). Furthermore, the baseline hemoglobin levels were correlated positively with iron and ferritin levels, implying that an impaired iron metabolism might cause lower hemoglobin levels in rapid decliners. Conclusions In patients with type 2 diabetes with preserved renal function and normoalbuminuria, lower hemoglobin levels were a risk factor for rapid decliners, where disturbed iron metabolism might precede the development of diabetic kidney disease

    Alleviation of lipopolysaccharide/d-galactosamine-induced liver injury in leukocyte cell-derived chemotaxin 2 deficient mice

    No full text
    Leukocyte cell-derived chemotaxin 2 (LECT2) is a secreted pleiotropic protein that is mainly produced by the liver. We have previously shown that LECT2 plays an important role in the pathogenesis of inflammatory liver diseases. Lipopolysaccharide/d-galactosamine (LPS/d-GalN)-induced acute liver injury is a known animal model of fulminant hepatic failure. Here we found that this hepatic injury was alleviated in LECT2-deficient mice. The levels of TNF-α and IFN-γ, which mediate this hepatitis, had significantly decreased in these mice, with the decrease in IFN-γ production notably greater than that in TNF-α. We therefore analyzed IFN-γ-producing cells in liver mononuclear cells. Flow cytometric analysis showed significantly reduced IFN-γ production in hepatic NK and NKT cells in LECT2-deficient mice compared with in wild-type mice. We also demonstrated a decrease in IFN-γ production in LECT2-deficient mice after systemic administration of recombinant IL-12, which is known to induce IFN-γ in NK and NKT cells. These results indicate that a decrease of IFN-γ production in NK and NKT cells was involved in the alleviation of LPS/d-GalN-induced liver injury in LECT2-deficient mice

    Podocyte-specific deletion of tubular sclerosis complex 2 promotes focal segmental glomerulosclerosis and progressive renal failure.

    No full text
    Obesity can initiate and accelerate the progression of kidney diseases. However, it remains unclear how obesity affects renal dysfunction. Here, we show that a newly generated podocyte-specific tubular sclerosis complex 2 (Tsc2) knockout mouse model (Tsc2Δpodocyte) develops proteinuria and dies due to end-stage renal dysfunction by 10 weeks of age. Tsc2Δpodocyte mice exhibit an increased glomerular size and focal segmental glomerulosclerosis, including podocyte foot process effacement, mesangial sclerosis and proteinaceous casts. Podocytes isolated from Tsc2Δpodocyte mice show nuclear factor, erythroid derived 2, like 2-mediated increased oxidative stress response on microarray analysis and their autophagic activity is lowered through the mammalian target of rapamycin (mTOR)-unc-51-like kinase 1 pathway. Rapamycin attenuated podocyte dysfunction and extends survival in Tsc2Δpodocyte mice. Additionally, mTOR complex 1 (mTORC1) activity is increased in podocytes of renal biopsy specimens obtained from obese patients with chronic kidney disease. Our work shows that mTORC1 hyperactivation in podocytes leads to severe renal dysfunction and that inhibition of mTORC1 activity in podocytes could be a key therapeutic target for obesity-related kidney diseases
    corecore