34 research outputs found

    An α-synuclein decoy peptide prevents cytotoxic α-synuclein aggregation caused by fatty acid binding protein 3

    Get PDF
    α-synuclein (αSyn) is a protein known to form intracellular aggregates during the manifestation of Parkinson’s disease. Previously, it was shown that αSyn aggregation was strongly suppressed in the midbrain region of mice that did not possess the gene encoding the lipid transport protein fatty acid binding protein 3 (FABP3). An interaction between these two proteins was detected in vitro, suggesting that FABP3 may play a role in the aggregation and deposition of αSyn in neurons. In order to characterize the molecular mechanisms that underlie the interactions between FABP3 and αSyn that modulate the cellular accumulation of the latter, in this report, we used in vitro fluorescence assays combined with fluorescence microscopy, transmission electron microscopy, and quartz crystal microbalance assays to characterize in detail the process and consequences of FABP3-αSyn interaction. We demonstrated that binding of FABP3 to αSyn results in changes in the aggregation mechanism of the latter; specifically, a suppression of fibrillar forms of αSyn, and also the production of aggregates with an enhanced cytotoxicity toward mice neuro2A cells. Since this interaction involved the C-terminal sequence region of αSyn, we tested a peptide derived from this region of αSyn (αSynP130-140) as a decoy to prevent the FABP3-αSyn interaction. We observed that the peptide competitively inhibited binding of αSyn to FABP3 in vitro and in cultured cells. We propose that administration of αSynP130-140 might be used to prevent the accumulation of toxic FABP3-αSyn oligomers in cells, thereby preventing the progression of Parkinson’s disease

    Combined citicoline and docosahexaenoic acid treatment improves cognitive dysfunction following transient brain ischemia.

    Get PDF
    Phospholipids are structural components of cellular membranes that play important roles as precursors for various signaling pathways in modulating neuronal membrane function and maintenance of the intracellular environment. Phosphatidylcholine (PtdCho) is the most abundant cellular phospholipid. Citicoline and docosahexaenoic acid (DHA) are essential intermediates in the synthesis of PtdCho. Both PtdCho intermediates have independently shown neuroprotective effects in cerebral ischemia, but their combined effect is unknown. This study aimed to investigate the combined effect of oral citicoline and DHA treatment on improvement of cognitive deficits following cerebral ischemia using a 20-min bilateral common carotid artery occlusion (BCCAO) mouse model. BCCAO ischemic mice were treated for a total of 11 days with a combination of citicoline (40 mg/kg body weight/day) and DHA (300 mg/kg body weight/day) or each alone. Combined citicoline and DHA synergistically and significantly improved learning and memory ability of ischemic mice compared with either alone. Further, citicoline and DHA treatment significantly prevented neuronal cell death, and slightly increased DHA-containing PtdCho in the hippocampus, albeit not significantly. Taken together, these findings suggest that combined citicoline and DHA treatment may have synergistic benefits for partially improving memory deficits following transient brain ischemia. Keywords: Citicoline, DHA, Bilateral common carotid artery occlusion, Neuroprotection, Memor

    Anti-Epileptic Effects of FABP3 Ligand MF1 through the Benzodiazepine Recognition Site of the GABAA Receptor

    No full text
    Recently, we developed the fatty acid-binding protein 3 (FABP3) ligand MF1 (4-(2-(1-(2-chlorophenyl)-5-phenyl-1H-pyrazol-3-yl)phenoxy) butanoic acid) as a therapeutic candidate for α-synucleinopathies. MF1 shows affinity towards γ-aminobutyric acid type-A (GABAA) receptor, but its effect on the receptor remains unclear. Here, we investigate the pharmacological properties of MF1 on the GABAA receptor overexpressed in Neuro2A cells. While MF1 (1–100 μm) alone failed to evoke GABA currents, MF1 (1 μm) promoted GABA currents during GABA exposure (1 and 10 μm). MF1-promoted GABA currents were blocked by flumazenil (10 μm) treatment, suggesting that MF1 enhances receptor function via the benzodiazepine recognition site. Acute and chronic administration of MF1 (0.1, 0.3 and 1.0 mg/kg, p.o.) significantly attenuated status epilepticus (SE) and the mortality rate in pilocarpine (PILO: 300 mg/kg, i.p.)-treated mice, similar to diazepam (DZP: 5.0 mg/kg, i.p.). The anti-epileptic effects of DZP (5.0 mg/kg, i.p.) and MF1 (0.3 mg/kg, p.o.) were completely abolished by flumazenil (25 mg/kg, i.p.) treatment. Pentylenetetrazol (PTZ: 90 mg/kg, i.p.)-induced seizures in mice were suppressed by DZP (5.0 mg/kg, i.p.), but not MF1. Collectively, this suggests that MF1 is a mild enhancer of the GABAA receptor and exercises anti-epileptic effects through the receptor’s benzodiazepine recognition site in PILO-induced SE models

    Clinical Therapeutic Strategy and Neuronal Mechanism Underlying Post-Traumatic Stress Disorder (PTSD)

    No full text
    Post-traumatic stress disorder (PTSD) is characterized by an exaggerated response to contextual memory and impaired fear extinction, with or without mild cognitive impairment, learning deficits, and nightmares. PTSD is often developed by traumatic events, such as war, terrorist attack, natural calamities, etc. Clinical and animal studies suggest that aberrant susceptibility of emotion- and fear-related neurocircuits, including the amygdala, prefrontal cortex (PFC), and hippocampus may contribute to the development and retention of PTSD symptoms. Psychological and pharmacological therapy, such as cognitive behavioral therapy (CBT), and treatment with anti-depressive agents and/or antipsychotics significantly attenuate PTSD symptoms. However, more effective therapeutics are required for improvement of quality of life in PTSD patients. Previous studies have reported that ω3 long-chain polyunsaturated fatty acid (LCPUFA) supplements can suppress the development of PTSD symptoms. Fatty acid binding proteins (FABPs) are essential for LCPUFA intracellular trafficking. In this review, we have introduced Fabp3 null mice as an animal model of PTSD with impaired fear extinction. Moreover, we have addressed the neuronal circuits and novel therapeutic strategies for PTSD symptoms

    Crucial Role of FABP3 in αSyn-Induced Reduction of Septal GABAergic Neurons and Cognitive Decline in Mice

    No full text
    International audienceIn synucleinopathies, while motor symptoms are thought to be attributed to the accumulationof misfolded a-synuclein (aSyn) in nigral dopaminergic neurons, it remains to be elucidatedhow cognitive decline arises. Here, we investigated the effects of distinct aSyn strains on cognitionand the related neuropathology in the medial septum/diagonal band (MS/DB), a key region forcognitive processing. Bilateral injection of aSyn fibrils into the dorsal striatum potently impairedcognition in mice. The cognitive decline was accompanied by accumulation of phosphorylated aSynat Ser129 and reduction of gamma-aminobutyric acid (GABA)-ergic but not cholinergic neurons inthe MS/DB. Since we have demonstrated that fatty acid-binding protein 3 (FABP3) is critical for aSynneurotoxicity in nigral dopaminergic neurons, we investigated whether FABP3 also participates inaSyn pathology in the MS/DB and cognitive decline. FABP3 was highly expressed in GABAergic butrarely in cholinergic neurons in the MS/DB. Notably, Fabp3 deletion antagonized the accumulationof phosphorylated aSyn, decrease in GABAergic neurons, and cognitive impairment caused byaSyn fibrils. Overall, the present study indicates that FABP3 mediates aSyn neurotoxicity in septalGABAergic neurons and the resultant cognitive impairment, and that FABP3 in this subpopulationcould be a therapeutic target for dementia in synucleinopathies

    Fatty Acid Binding Protein 3 Enhances the Spreading and Toxicity of α-Synuclein in Mouse Brain

    No full text
    Oligomerization and/or aggregation of α-synuclein (α-Syn) triggers α-synucleinopathies such as Parkinson’s disease and dementia with Lewy bodies. It is known that α-Syn can spread in the brain like prions; however, the mechanism remains unclear. We demonstrated that fatty acid binding protein 3 (FABP3) promotes propagation of α-Syn in mouse brain. Animals were injected with mouse or human α-Syn pre-formed fibrils (PFF) into the bilateral substantia nigra pars compacta (SNpc). Two weeks after injection of mouse α-Syn PFF, wild-type (WT) mice exhibited motor and cognitive deficits, whereas FABP3 knock-out (Fabp3−/−) mice did not. The number of phosphorylated α-Syn (Ser-129)-positive cells was significantly decreased in Fabp3−/− mouse brain compared to that in WT mice. The SNpc was unilaterally infected with AAV-GFP/FABP3 in Fabp3−/− mice to confirm the involvement of FABP3 in the development of α-Syn PFF toxicity. The number of tyrosine hydroxylase (TH)- and phosphorylated α-Syn (Ser-129)-positive cells following α-Syn PFF injection significantly decreased in Fabp3−/− mice and markedly increased by AAV-GFP/FABP3 infection. Finally, we confirmed that the novel FABP3 inhibitor MF1 significantly antagonized motor and cognitive impairments by preventing α-Syn spreading following α-Syn PFF injection. Overall, FABP3 enhances α-Syn spreading in the brain following α-Syn PFF injection, and the FABP3 ligand MF1 represents an attractive therapeutic candidate for α-synucleinopathy
    corecore