470 research outputs found

    Reconstructing Three-dimensional Structure of Underlying Triaxial Dark Halos From Xray and Sunyaev-Zel'dovich Effect Observations of Galaxy Clusters

    Full text link
    While the use of galaxy clusters as {\it tools} to probe cosmology is established, their conventional description still relies on the spherical and/or isothermal models that were proposed more than 20 years ago. We present, instead, a deprojection method to extract their intrinsic properties from X-ray and Sunyaev--Zel'dovich effect observations in order to improve our understanding of cluster physics. First we develop a theoretical model for the intra-cluster gas in hydrostatic equilibrium in a triaxial dark matter halo with a constant axis ratio. In this theoretical model, the gas density profiles are expressed in terms of the intrinsic properties of the dark matter halos. Then, we incorporate the projection effect into the gas profiles, and show that the gas surface brightness profiles are expressed in terms of the eccentricities and the orientation angles of the dark halos. For the practical purpose of our theoretical model, we provide several empirical fitting formulae for the gas density and temperature profiles, and also for the surface brightness profiles relevant to X-ray and Sunyaev--Zel'dovich effect observations. Finally, we construct a numerical algorithm to determine the halo eccentricities and orientation angles using our model, and demonstrate that it is possible in principle to reconstruct the 3D structures of the dark halos from the X-ray and/or Sunyaev-Zel'dovich effect cluster data alone without requiring priors such as weak lensing informations and without relying on such restrictive assumptions as the halo axial symmetry about the line-of-sight.Comment: Accepted version, new discussions added, typos and minor mistakes corrected, ApJ in press (2004, Feb. 1 scheduled, Vol. 601, No. 2 issue),26 pages, 7 postscript figure

    Organic Matter Clogging Results in Undeveloped Hardpan and Soil Mineral Leakage in the Rice Terraces in the Philippine Cordilleras

    Get PDF
    Rice terraces in Cordillera, Philippines, a world cultural heritage site, are threatened by the risk of collapse. It is crucial to manage these rice terraces for their conservation, while simultaneously practicing traditional farming. We examined the soil environment and investigated its effects on rice terrace conservation, by focusing on the hardpan condition; infiltration process, which is related to the collapse of rice terraces; and soil nutrition conditions in these sites. Field survey and soil analysis revealed that in areas where the hardpan was not sufficiently developed and water infiltration was effectively suppressed, organic matter content was significantly high, suggesting organic matter clogging. In these rice terraces, the amounts of P, K, Ca, and Mn were significantly low, showing the mineral leaching under reductive soil conditions. Therefore, hardpan formation, rather than organic matter clogging, is essential for the suppression of infiltration and prevention of potential terrace collapse. Because hardpan formation or organic matter clogging cannot be identified from the surface of flooded rice paddies, it is difficult to identify the influencing factor. Thus, we suggest that the hard soil layer should be checked before the planting season and drainage is allowed after the cropping season in the rainy season

    The status of DECIGO

    Get PDF
    DECIGO (DECi-hertz Interferometer Gravitational wave Observatory) is the planned Japanese space gravitational wave antenna, aiming to detect gravitational waves from astrophysically and cosmologically significant sources mainly between 0.1 Hz and 10 Hz and thus to open a new window for gravitational wave astronomy and for the universe. DECIGO will consists of three drag-free spacecraft arranged in an equilateral triangle with 1000 km arm lengths whose relative displacements are measured by a differential Fabry-Perot interferometer, and four units of triangular Fabry-Perot interferometers are arranged on heliocentric orbit around the sun. DECIGO is vary ambitious mission, we plan to launch DECIGO in era of 2030s after precursor satellite mission, B-DECIGO. B-DECIGO is essentially smaller version of DECIGO: B-DECIGO consists of three spacecraft arranged in an triangle with 100 km arm lengths orbiting 2000 km above the surface of the earth. It is hoped that the launch date will be late 2020s for the present

    Discovery of Multiply Imaged Galaxies behind the Cluster and Lensed Quasar SDSS J1004+4112

    Get PDF
    We have identified three multiply imaged galaxies in Hubble Space Telescope images of the redshift z=0.68 cluster responsible for the large-separation quadruply lensed quasar, SDSS J1004+4112. Spectroscopic redshifts have been secured for two of these systems using the Keck I 10m telescope. The most distant lensed galaxy, at z=3.332, forms at least four images, and an Einstein ring encompassing 3.1 times more area than the Einstein ring of the lensed QSO images at z=1.74, due to the greater source distance. For a second multiply imaged galaxy, we identify Ly_alpha emission at a redshift of z=2.74. The cluster mass profile can be constrained from near the center of the brightest cluster galaxy, where we observe both a radial arc and the fifth image of the lensed quasar, to the Einstein radius of the highest redshift galaxy, ~110 kpc. Our preliminary modeling indicates that the mass approximates an elliptical body, with an average projected logarithmic gradient of ~-0.5. The system is potentially useful for a direct measurement of world models in a previously untested redshift range.Comment: 5 pages, 3 figures. Accepted by ApJL. High resolution version of the paper can be found at: http://wise-obs.tau.ac.il/~kerens/papers.htm

    Cosmological Redshift Distortion of Correlation Functions as a Probe of the Density Parameter and the Cosmological Constant

    Get PDF
    We propose cosmological redshift-space distortion of correlation functions of galaxies and quasars as a probe of both the density parameter Ω0\Omega_0 and the cosmological constant λ0\lambda_0. In particular, we show that redshift-space distortion of quasar correlation functions at z∼2z\sim2 can in principle set a constraint on the value of λ0\lambda_0. This is in contrast to the popular analysis of galaxy correlation functions in redshift space which basically determines Ω00.6/b\Omega_0^{0.6}/b, where bb is the bias parameter, but is insensitive to λ0\lambda_0. For specific applications, we present redshift-space distortion of correlation functions both in cold dark matter models and in power-law correlation function models, and discuss the extent to which one can discriminate between the different λ0\lambda_0 models.Comment: 9 pages, 3 figures included. Accepted for Publication in ApJ Letter

    Hybridization Mechanism for Cohesion of Cd-based Quasicrystals

    Full text link
    Cohesion mechanism of cubic approximant crystals of newly discovered binary quasicrystals, Cd6_6M (M=Yb and Ca), are studied theoretically. It is found that stabilization due to alloying is obtained if M is an element with low-lying unoccupied dd states. This leads to conclusion that the cohesion of the Cd-based compounds is due to the hybridization of the dd states of Yb and Ca with a wide spsp band. %unlike known stable quasicrystals without transition elements %such as Al-Li-Cu and Zn-Mg-RE (RE:rare earth). Although a diameter of the Fermi sphere coincides with the strong Bragg peaks for Cd-Yb and Cd-Ca, the Hume-Rothery mechanism does not play a principal role in the stability because neither distinct pseudogap nor stabilization due to alloying is obtained for isostructural Cd-Mg. In addition to the electronic origin, matching of the atomic size is very crucial for the quasicrystal formation of the Cd-based compounds. It is suggested that the glue atoms, which do not participate in the icosahedral cluster, play an important role in stabilization of the compound.Comment: 4 pages, 2 figure

    Critical phase of a magnetic hard hexagon model on triangular lattice

    Full text link
    We introduce a magnetic hard hexagon model with two-body restrictions for configurations of hard hexagons and investigate its critical behavior by using Monte Carlo simulations and a finite size scaling method for discreate values of activity. It turns out that the restrictions bring about a critical phase which the usual hard hexagon model does not have. An upper and a lower critical value of the discrete activity for the critical phase of the newly proposed model are estimated as 4 and 6, respectively.Comment: 11 pages, 8 Postscript figures, uses revtex.st

    Impact of Concomitant Thiopurine on the Efficacy and Safety of Filgotinib in Patients with Ulcerative Colitis: Post hoc Analysis of the Phase 2b/3 SELECTION Study

    Get PDF
    BACKGROUND AND AIMS: SELECTION is the first study to assess the impact of concomitant thiopurine and other immunomodulator [IM] use on the efficacy and safety of a Janus kinase inhibitor, filgotinib, in patients with ulcerative colitis. METHODS: Data from the phase 2b/3 SELECTION study were used for this post hoc analysis. Patients were randomized [2:2:1] to two induction studies [biologic-naive, biologic-experienced] to filgotinib 200 mg, 100 mg, or placebo. At week 10, patients receiving filgotinib were re-randomized [2:1] to continue filgotinib or switch to placebo until week 58 [maintenance]. Outcomes were compared between subgroups with and without concomitant IM use. RESULTS: At week 10, a similar proportion of patients in +IM and -IM groups treated with filgotinib 200 mg achieved Mayo Clinic Score [MCS] response [biologic-naive: 65.8% vs 66.9%; biologic-experienced: 61.3% vs 50.5%] and clinical remission [biologic-naive: 26.0% vs 26.2%; biologic-experienced: 11.3% vs 11.5%]. At week 58, a similar proportion of patients in +IM and -IM groups treated with filgotinib 200 mg achieved MCS response [biologic-naive: 74.2% vs 75.0%; biologic-experienced: 45.5% vs 61.4%] and clinical remission [biologic-naive: 51.6% vs 47.4%; biologic-experienced: 22.7% vs 24.3%]. The probability of protocol-specified disease worsening during the maintenance study in patients treated with filgotinib 200 mg did not differ between +IM and -IM groups [p = 0.6700]. No differences were observed in the incidences of adverse events between +IM and -IM groups in induction/maintenance studies. CONCLUSIONS: The efficacy and safety profiles of filgotinib treatment in SELECTION did not differ with or without concomitant IM use

    Association between Serum Soluble Klotho Levels and Mortality in Chronic Hemodialysis Patients

    Get PDF
    Klotho is a single-pass transmembrane protein predominantly expressed in the kidney. The extracellular domain of Klotho is subject to ectodomain shedding and is released into the circulation as a soluble form. Soluble Klotho is also generated from alternative splicing of the Klotho gene. In mice, defects in Klotho expression lead to complex phenotypes resembling those observed in dialysis patients. However, the relationship between the level of serum soluble Klotho and overall survival in hemodialysis patients, who exhibit a state of Klotho deficiency, remains to be delineated. Here we prospectively followed a cohort of 63 patients with a mean duration of chronic hemodialysis of 6.7±5.4 years for a median of 65 months. Serum soluble Klotho was detectable in all patients (median 371 pg/mL, interquartile range 309–449). Patients with serum soluble Klotho levels below the lower quartile (<309 pg/mL) had significantly higher cardiovascular and all-cause mortality rates. Furthermore, the higher all-cause mortality persisted even after adjustment for confounders (hazard ratio 4.14, confidence interval 1.29–13.48). We conclude that there may be a threshold for the serum soluble Klotho level associated with a higher risk of mortality

    Obliquity of an Earth-like planet from frequency modulation of its direct imaged lightcurve: mock analysis from general circulation model simulation

    Full text link
    Direct-imaging techniques of exoplanets have made significant progress recently, and will eventually enable to monitor photometric and spectroscopic signals of earth-like habitable planets in the future. The presence of clouds, however, would remain as one of the most uncertain components in deciphering such direct-imaged signals of planets. We attempt to examine how the planetary obliquity produce different cloud patterns by performing a series of GCM (General Circulation Model) simulation runs using a set of parameters relevant for our Earth. Then we use the simulated photometric lightcurves to compute their frequency modulation due to the planetary spin-orbit coupling over an entire orbital period, and attempt to see to what extent one can estimate the obliquity of an Earth-twin. We find that it is possible to estimate the obliquity of an Earth-twin within the uncertainty of several degrees with a dedicated 4 m space telescope at 10 pc away from the system if the stellar flux is completely blocked. While our conclusion is based on several idealized assumptions, a frequency modulation of a directly-imaged earth-like planet offers a unique methodology to determine its obliquity.Comment: 29 pages, 18 figures, accepted for publication in Ap
    • …
    corecore