
water

Article

Organic Matter Clogging Results in Undeveloped
Hardpan and Soil Mineral Leakage in the Rice
Terraces in the Philippine Cordilleras

Tomoyo Kurozumi 1, Yasushi Mori 1,*, Hiroaki Somura 1 and Milagros O-How 2

1 Graduate School of Environmental and Life Science, Okayama University, Okayama 700-8530, Japan;
pyri7j1p@s.okayama-u.ac.jp (T.K.); somura@okayama-u.ac.jp (H.S.)

2 Universal Harvester Inc., 7th/8th Avenue, Cubao, Quezon City 1109, Philippines; moh_secretary@yahoo.com
* Correspondence: yasushim@cc.okayama-u.ac.jp

Received: 31 August 2020; Accepted: 9 November 2020; Published: 12 November 2020
����������
�������

Abstract: Rice terraces in Cordillera, Philippines, a world cultural heritage site, are threatened by the
risk of collapse. It is crucial to manage these rice terraces for their conservation, while simultaneously
practicing traditional farming. We examined the soil environment and investigated its effects on rice
terrace conservation, by focusing on the hardpan condition; infiltration process, which is related to
the collapse of rice terraces; and soil nutrition conditions in these sites. Field survey and soil analysis
revealed that in areas where the hardpan was not sufficiently developed and water infiltration was
effectively suppressed, organic matter content was significantly high, suggesting organic matter
clogging. In these rice terraces, the amounts of P, K, Ca, and Mn were significantly low, showing the
mineral leaching under reductive soil conditions. Therefore, hardpan formation, rather than organic
matter clogging, is essential for the suppression of infiltration and prevention of potential terrace
collapse. Because hardpan formation or organic matter clogging cannot be identified from the surface
of flooded rice paddies, it is difficult to identify the influencing factor. Thus, we suggest that the hard
soil layer should be checked before the planting season and drainage is allowed after the cropping
season in the rainy season.
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1. Introduction

The Ifugao Rice Terraces in Luzon, Philippines, including the UNESCO World Heritage site
“Rice Terraces of the Philippine Cordilleras”, are the main agricultural production base of the area
and considered a valuable asset for the traditional rice culture practiced in Ifugao. The terraces
occupy 17,138 hectares of the total land area [1]. While the historic terraces cover an extensive area,
the inscribed property consists of five clusters of the most intact terraces, which are the Nagacadan,
Hungduan, Central Mayoyao, Bangaan, and Batad rice terraces [2].

In 2001, the Cordillera terraced rice fields were listed in the World Cultural Heritage in Danger,
due to the deterioration of their physical integrity [3]. As this threat affects the social and economic
aspects of life in this region, rural sociological measures, such as creating awareness, labor-intense
activities, and funding, have been implemented to maintain rice terraces; consequently, the site was
removed from the danger list in 2012 [4]. However, the threat has not been entirely addressed,
because the crisis was resolved based on the sociological and cultural conditions surrounding the
terraced rice fields, and not as a result of protection measures based on natural sciences. Rice terrace
conservation activities have to be adapted to the field environment, such as water, soil, or nutrients.

In order to manage the rice terraces based on the scientific knowledge, several key issues should
be addressed—that is, the cropping system in sloped fields with ridges to prevent soil erosion,
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effective water use management with limited water resources, and water holding hardpan at the
bottom of the rice field.

Historically, potatoes were produced as the staple food in Ifugao. However, with improved
irrigation and demand for higher yield and longer storage, the local communities developed their
irrigation and farming system in the form of rice terraces [5]. Cropping in sloped field often suffer
from the impact of heavy rainfall because heavy rainfall causes surface runoff which removes fertile
surface soil. To prevent soil erosion during agricultural practices, ridges or levees were created, and
fields were leveled to help retain water in the agricultural field. In this way, water that is supposed
to flow down the slope is contained and used for crop cultivation, and it also prevents soil loss and
helps maintain soil fertility in the fields. To efficiently use limited land, especially in countries with
large mountainous areas, this technique, which is also culturally significant, is used as a means to
conserve fertile soil environment [6]. There are two types of ridges: rice fields that have dykes formed
by compacting the soil and rice fields where dykes are piled with stones. In some areas, both types of
terraced rice fields can be seen together [7].

The terraces are often created in landslide areas because of abundant water supply and gentle
slopes; consequently, these terraces can be easily cultivated using labor pool and water buffaloes or
horses [7]. Farmers have used disasters, such as landslides, to their advantage by opening up their
fields, building villages around the fields, and making a living from them. As paddy fields are built in
natural environments, the use of water in the terraces plays an important role in preventing disasters
by infiltrating/draining the water appropriately. The techniques of water use and management have
been the local norms for sustainable agriculture in the region.

The drainage or infiltration of water from the field surface is a major factor for the increase in
groundwater level in rice terraces. The surface water flow accounts for 92–98% of the total inflow
in the area, whereas the amount of groundwater inflow/outflow is low [8]. Nanbu [9] reported that
during irrigation and heavy rainfall, such as the typhoon period, the amount of infiltration in a paddy
field is considerably higher than that in a forest area. During heavy rains, abandoned terraces have
three times higher infiltration than cultivated terraces. When terraces are abandoned, macropores
are created by soil animals, plants, and aggregation structures. The resulting soil structure has many
pores, which result in higher hydraulic conductivity of both topsoil and subsoil (hardpan) [10,11].
These findings suggest that the conservation of the physical structure of rice terraces is crucial for
controlling infiltration, and this infiltration is significantly related to the soil environment.

In general, rice terraces hold water by forming hardpans below the topsoil. Hardpans are created
by heavy machinery/livestock/human traffic or repeated dry and wet process during the irrigation and
dry season [12]. A well-formed hardpan can control infiltration and the groundwater level. If well
designed, a hardpan can be formed within 3 years even if the fields are abandoned for a long time [13].
In addition, hardpan formation is important for maintaining soil nutrients and for holding water
required for rice plant growth [14,15]. Another mechanism of infiltration control is the addition of
clay soil as a subsoil [16,17]. The principle is different from that of hardpan formation by compaction;
however, the fine particles of clay control infiltration by filling the pore gaps.

Here, we can recapture the background of the rice terraces from two aspects: (i) the geomechanical
aspect, such as the formation of hardpan, dykes, and ridges to support the slopes and prevent slope
failures, and (ii) effectively use limited water resources, such as by suppressing infiltration. These two
aspects are strongly related to each other, and hardpan plays an important role in both. However,
in Ifugao Province, rice paddies are always in a flooded condition. Therefore, the soil surface cannot be
observed, or the soil profile cannot be thoroughly examined. Therefore, we focused on the formation
and management of the hardpan, which would be a key factor for rice terrace conservation.

The objectives of this study were to examine the stability of hardpans and the development of
infiltration suppression, and to assess the nutrient conditions in rice terraces, which influence the
management of rice cultivation. We measured soil hardness, soil infiltration properties, soil particle
distribution, organic matter (OM), and soil minerals. We conducted this study to understand the
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conservation techniques from a scientific perspective and help effectively manage rice terraces.
This study is important for the conservation of terraced rice fields, the source of rice production in
the region and a World Heritage site. It also addresses a common issue in Asia, where countries
need to maintain rice paddies in an aging society. Therefore, the data of this study have widespread
implications in the Asian monsoon zone.

2. Materials and Methods

2.1. Field Overview

We examined three rice terraces in Ifugao Province, namely Bangaan, Hapao, and Poblacion,
which are shown in Figure 1. Bangaan and Hapao are located in Banaue and Hungduan Municipalities
and are designated as UNESCO World Heritage sites. Poblacion in Banaue, which is declared a
National Cultural Treasure by the Philippines Government, was also selected because of the restoration
projects, which were ongoing during the study period.
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Figure 1. Site map for (a) Ifugao province and (b) sampling villages.

Bangaan has terraced rice fields on a steep natural slope (20◦) heading toward the valley,
with schools upstream and a village in the middle. Poblacion has many reconstructed rice terraces,
and it is positioned as a landmark for rice terrace restoration projects. There are rice terraces at an
average inclination of 45◦; many levees are not well maintained in Poblacion. In Hapao, almost all
levees are fixed with concrete and the slope is gentle; therefore, movement between rice terraces was
the easiest among the three sites.
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All rice paddies in these sites are maintained in a flooded condition to avoid crack or fissure that
results in collapse [18]. Therefore, the soil surface cannot be observed, or the soil profile characteristics
cannot be thoroughly examined.

2.2. Field Research and Sampling

We first visited the fields in April 2017 to obtain permission to survey the World Heritage site,
and then in August 2017 to interview the local people and select sampling sites. We conducted field
surveys in Bangaan, Hapao, and Poblacion in March 2018. We collected soil samples at depths of 0,
10, and 30 cm, from each rice paddy, at three different elevations, namely, upper, middle, and lower
elevation, based on the relative elevation of each site (Figure 2).
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Figure 2. Sampling location (a) Bangaan, (b) Hapao, and (c) Poblacion (cited from Google Earth Pro
ver. 7.3.3.7669).

As rice fields are always flooded, soil sampling was conducted using a 1-mm thick aluminum
cylinder container (50 mL) with a small hole for water and air to escape during sampling. The cylinder
was gently pushed into the mud and pulled out; then the soil sample was transferred to a plastic
container for storage.
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Soil hardness was tested using a digital cone penetrometer (DIK-5532; Daiki Rika Kogyo Co., Ltd.,
Saitama, Japan). The vertical profiles of soil hardness were obtained by inserting the cone (2 cm2)
into the rice paddy field to a depth of 60 cm; the measurement was performed at three points in each
paddy field. The infiltration rate was measured in triplicate using the Rapid Leakage Capacity Tester
(DIK-4350; Daiki Rika Kogyo Co., Ltd., Saitama, Japan). The leakage test device consisted of a 14 cm
wide × 14 cm deep cylinder connected to a 3.5-mm diameter plastic pipe gauge at the top to measure
infiltration. The cylinder was set in a rice paddy field, and the cylinder and plastic pipe were filled
with water. Subsequently, vertical infiltration was measured by recording the water level on the plastic
pipe gauge. The device should be saturated with water without air to maintain hydraulic continuity.

2.3. Laboratory Experiment and Analysis

All soil samples were weighed to determine water content and bulk density, and oven dried at
80 ◦C to avoid OM decomposition. They were then ground and sieved through a 2-mm mesh for
further analysis.

Total carbon and nitrogen concentrations in soil samples at the 0, 10, and 30 cm depths were
measured using an Elemental Analyzer (2400 Series II CHNS/O; Perkin Elmer, Inc., Waltham, MA,
USA). Exchangeable cations were measured using an inductively coupled plasma (ICP) multi-type
atomic emission spectrometer (ICPE-9820; Shimadzu Corporation, Kyoto, Japan). Briefly, ammonium
acetate solution (pH 7) was added to 1 g of the soil sample, and the mixture was stirred for 1 h,
filtered (0.45 µm filter), and diluted (10 times) for ICP measurement. Since the purpose of the study
was to examine and compare the soil environment affected by the management practices, and not to
measure the nutrient status for plant growth, ammonium acetate extraction for exchangeable cations
was employed for all samples.

Particle size distribution analysis was performed using the Laser Diffraction Particle Size Analyzer
(SALD-3100; Shimadzu Corporation, Kyoto, Japan). To approximately 70 mg of soil from each
sample, 5% hydrogen peroxide solution was added for organic matter decomposition. Thereafter,
sodium hexametaphosphate was added as a dispersant. Particle size distribution was analyzed by
circulating 40–200 mg of soil in a water bath, irradiating with a laser source, and analyzing the resulting
diffraction patterns.

Soil water electrical conductivity (EC) was measured using the 1:5 (soil:water) extraction method
with a conductivity meter (B-771 LAQUA twin; Horiba Ltd., Kyoto, Japan). The soil pH was
measured using the 1:2.5 (soil:water) extraction method with a compact pH meter (LAQUA twin B-71X;
Horiba Ltd., Kyoto, Japan). Statistical analysis was performed using SPSS Statistics software (IBM,
Chicago, IL, USA).

3. Results and Discussions

The basic properties of the soil samples are shown in Table 1. The bulk density of soil was low,
because all fields were in flooded conditions. Most soil textures were of the loam type, with a few
silty loam types in Bangaan and Poblacion, and also sandy loam type in Hapao. The EC was not
significantly different among the samples. With a decrease in elevation, the soil pH showed a slightly
decreasing trend in both Bangaan and Poblacion, but a slightly increasing trend in Hapao.
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Table 1. Basic properties of soil samples from rice terraces in Bangaan, Hapao, and Poblacion.

Depth
Dry
Bulk

Density

Particle Distribution
Clay Silt Sand EC pH Total

Carbon
Total

Nitrogen

(cm) (g/cm3) (%) (mS/cm) (%) (%)

Bangaan

Upper
0 0.44 15.62 50.70 33.68 0.15 7.1 2.42 0.23

10 0.46 12.24 40.28 47.48 0.13 6.2 2.52 0.21
30 0.80 16.49 49.77 33.74 0.09 6.5 1.73 0.16

Middle
0 0.26 14.08 43.32 42.60 0.12 6.3 3.32 0.28

10 0.52 17.96 46.98 35.07 0.11 6.0 2.40 0.22
30 0.78 18.01 49.07 32.92 0.11 6.0 1.93 0.19

Lower
0 0.56 11.03 43.02 45.96 0.13 6.2 2.04 0.18

10 0.72 12.00 45.00 43.00 0.12 5.6 1.77 0.16
30 0.73 11.79 40.14 48.07 0.09 5.8 2.10 0.18

Hapao

Upper
0 0.22 19.86 47.33 32.81 0.13 5.9 5.28 0.44

10 0.27 20.17 45.57 34.26 0.12 5.8 5.11 0.40
30 0.35 19.98 45.90 34.12 0.09 5.6 4.70 0.33

Middle
0 0.33 10.25 37.58 52.18 0.10 6.0 3.52 0.28

10 0.39 10.36 41.97 47.67 0.08 5.8 3.55 0.26
30 0.44 17.69 37.10 45.21 0.08 5.8 3.23 0.25

Lower
0 0.50 11.66 27.63 60.71 0.14 5.8 5.13 0.40

10 0.63 13.22 43.68 43.11 0.19 7.7 3.60 0.29
30 0.38 26.15 39.53 34.32 0.09 6.1 5.42 0.49

Poblacion

Upper
0 0.57 20.42 49.37 30.21 0.13 7.0 2.30 0.20

10 1.08 14.30 40.30 45.40 0.05 7.2 0.84 0.08
30 1.12 17.61 51.69 30.71 0.05 7.1 1.45 0.13

Middle
0 0.42 17.43 51.15 31.42 0.16 6.7 2.97 0.26

10 0.37 16.81 54.22 28.97 0.12 6.4 3.15 0.27
30 0.72 13.80 44.27 41.94 0.11 6.1 2.09 0.17

Lower
0 0.41 13.90 46.36 39.74 0.22 6.6 3.59 0.28

10 0.40 15.63 49.82 34.55 0.25 6.5 3.35 0.26
30 0.52 17.14 40.10 42.76 0.26 6.3 3.04 0.24

3.1. Hardpan Formation

The soil hardness profiles are shown in Figure 3. In most of the locations and the elevations,
soil hardness increased gradually from 10 to 20 cm, with some peaks at 20–50 cm; the troughs and
crests in the figure show these variations in the hardpan. The peaks varied from one site to another.
In some fields, the peaks were not apparent. Generally, the plough layer, where rice seeds are usually
planted, is 0–20 cm deep, and thus a hardness peak at a depth of 40 or 50 cm would be rather deep.

Soil hardness of approximately 1000 kPa or more can restrain water infiltration in a highly
water-retaining Andosol [19]. Similar values, 813–911 kPa, were reported for gley upland soils [20].
Thus, we used 1000 kPa as a standard to determine the presence or absence of a hardpan layer. Presence
of hardpan was confirmed when a continuous hardness of more than 1000 kPa was observed for more
than 3 cm of the soil profile. The results of the soil hardness tests showed that the nine rice terraces
(upper, middle, and lower sections in Bangaan, Hapao, and Poblacion) surveyed can be divided into
two groups. Five sites fulfilled the standard hardness criterion, with a layer of more than 1000 kPa
hardness, whereas in the other four sites, the soil hardness did not fulfill the standard hardness criterion
(Table 2).

Among the reasons for lack of hardpan could be the inability to maintain the field by plowing with
heavy machinery or water buffaloes. Only a few farmers have access to water buffaloes for plowing
the soil, and thus, the compaction of the subsoil layer is insufficient; moreover, heavy machineries,
such as tractors, are not allowed for plowing. Another reason is the rice terraces are always flooded.
A factor that favors hardpan layers is the repeated dry and wet process during the irrigation and dry
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season [12]. Insufficient soil compaction can be attributed to the decrease in interparticle binding force.
Moreover, constant flooding prevents the cohesion of soil particles at the bottom.

In Hapao, all three fields lacked hardpans, possibly because of the concrete dykes; hence,
the farmers were less concerned about the physical maintenance of their fields, including the formation
of hardpans.

Table 2. Statistical classification of the sampling site by hardpan formation.

Group Sampling Point Samples n

With hardpan
(>1000 kPa)

Bangaan Upper

12
Lower

Poblacion
Upper
Lower

Without hardpan
(<1000 kPa)

Bangaan Middle

15Hapao
Upper
Middle
Lower

Poblacion Middle
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3.2. Infiltration Rate Control

The infiltration rate in the three sites is shown in Figure 4. In general, a standard infiltration rate
is 15 mm/day [21] with the upper limit of approximately 25 mm/day for high yield [22]. As established,
infiltration can be substantially low when a hardpan is successfully formed. However, the results
showed that infiltration rate in these areas was within or below the range, regardless of the formation
of hardpans, with no significant difference between the two groups in terms of soil hardness profile.Water 2020, 12, x FOR PEER REVIEW 8 of 13 
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only once in the lower fields of Poblacion owing to gas emission.

It should be noted that gas bubbles from the soil often intruded the infiltration tube during
measurements. Considering the anaerobic flooded conditions and the presence of bubbles in situ,
we hypothesized that the gas emitted was methane, CH4. Carbon dioxide and hydrogen were ruled out
because the former dissolves in water and is not expected to be present in anaerobic conditions, and the
latter is usually utilized in the production of methane gas [23]. If our hypothesis is correct, methane gas
emission can obstruct the sedimentation of soil particles, which can lead to undeveloped hardpan.

3.3. Effect of Organic Matter

The results of soil hardness profiles and infiltration rate suggest that infiltration is controlled
by factors other than hardpan formation. Infiltration suppression can be achieved by not only
creating a dense layer by compaction but also clogging. Clogging might occur by fine clay minerals,
which can swell.

We examined the clay content in each soil sample in relation to infiltration without hardpan
formation. However, there was no significant relationship (Mann–Whitney U test, 5%); this indicated
that the content of fine particles was not related to appropriate infiltration without hardpan formation.

We also examined the total carbon (TC) as an indicator of OM, for infiltration suppression without
hardpan formation (Figure 5). Highly viscous and sticky properties of OM can control infiltration.
The results of the Mann–Whitney U test (5%) showed that there was a significant difference in the TC
concentration. Thus, in rice terraces, a relatively higher OM content can control infiltration by clogging,
without the formation of hardpan.
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Touch [24] reported that organic mud in the soil could greatly reduce hydraulic conductivity.
Zhao [25] used wastewater as an OM source and showed that OM is a major factor influencing biofilm
growth, which accelerates the decrease in infiltration rate. Furthermore, microbial activity causes
clogging, and thus, gradually decreases soil-infiltration ability in the long term [26,27].

In the rice terraces in the Cordilleras, infiltration control is appropriately performed and flooding
is maintained. However, there are rice terraces with undeveloped hardpans; this indicates a high
OM content in these areas. That is, in areas where hardpans are poorly formed, it is highly possible
that infiltration control occurs by the clogging of OM. Gas bubble intrusion in the tube during the
infiltration test further supports this result.

3.4. Characteristics of Minerals in Rice Terraces under Constantly Flooded Conditions

The soil chemical environment affected by hardpan formation was examined in the present study.
In addition to total C and N measurement, Ca, K, Mg, Mn, and P were effectively extracted from the
soils and measured by ICP. First, major nutrients, N, P, and K are shown in Figure 6. There were
significant differences in the concentration of nutrients between the groups with and without hardpans
(Mann–Whitney U test, 5%). When hardpans were not sufficiently developed, N was significantly
high, which was the same trend for total C in Figure 5. C/N correlation supported the estimation
that organic matter clogging suppresses infiltration. On the other hand, P and K were significantly
low when hardpans were not sufficiently developed. Similarly, in Figure 7, Ca, K, and Mn showed
significantly low concentrations (Mann–Whitney U test, 5%) when hardpans were not sufficiently
developed. The pH also showed a similar trend (Figure 7): it was higher in areas with hardpan and
contrary in areas without hardpan (Mann–Whitney U test, 5%).

A potential reason for mineral leakage would be pH and reductive soil condition. Although there
was a significant difference in pH with or without hardpan, the range of pH was appropriate for
agricultural practices for major crops [28]. Thus, we hypothesized that mineral leakage was caused by
the development of reductive conditions. Gas emission or mineral leakage was usually determined by
Oxidation-Reduction Potential (ORP). Based on methane gas emission (ORP below −150 mV; [29]),
reductive conditions were sufficient for Mn leakage (ORP below the range of +200 to +400 mV; [30]),
and P would be released from the soil particles along with Ca [31].

K is usually not associated with pH or reductive conditions, but it is easily leached by ion exchange.
Undeveloped hardpans indicated that soft soil layers could be deep; therefore, in this case, K would
move to a deeper profile with water movement. This soft layer will also help to transport other
minerals, such as Mn, Ca, and P to deeper profiles.
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The above process of ion leaching into the deeper profiles is estimated, as ionization progressed
under the reductive anaerobic conditions with abundant OM [32]. Fields with undeveloped hardpans
and higher OM content allowed ionized minerals to move deeper down the soil profile.

These experimental results were supported by the conditions of rice terraces, which are flooded
throughout the year to avoid crack development under dry conditions and the subsequent collapse.
In addition, the sewage system is not systematic, and we experienced the malodor of wastewater in
several rice terrace sites.

3.5. Effective Management for Rice Terraces in Ifugao Province

Infiltration can be controlled via hardpan formation by compaction and clogging by OM. However,
both hardpan formation and OM clogging cannot be identified from the surface of flooded rice paddies.
Therefore, it is difficult to identify the influencing factors. Although flooded conditions are crucial for
rice terrace management, OM clogging may cause nutrient leaching and greenhouse gas emission,
creating strong reductive conditions. Moreover, undeveloped hardpans cause deeper saturated profiles,
with a heavy soil layer inside the dyke. This condition could eventually lead to the potential risk of
ridge collapse.

Therefore, we suggest that the local people or government should check the depth of the hard
soil layer before the planting season in rice terraces. The hard soil layer is confirmed by inserting a
stick-like tool into the soil. If this is not sufficient, a compaction process might be needed. We also
suggest appropriate drainage in rice terraces. Among the reasons for this is to decompose the
easily degradable OM to avoid strong reductive conditions. The drainage should be preferably
conducted after the cropping season—that is, September or October—which is still in the rainy season.
Thus, the rainfall would flood the rice terraces in a relatively short period. Another reason is to develop
hardpans. Hardpans can be formed by heavy machine/animal traffic. Besides these, the repeated dry
and wet process allows soil particles to sediment and stick to each other, creating a stable cultivar
base. Although it is necessary to carefully monitor soil moisture conditions in order to avoid crack
development, drainage is a simple option to maintain rice terraces.
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4. Conclusions

With the ultimate aim of contributing to the conservation of rice terraces in the Cordilleras,
soil environmental factors were examined. As the site is always flooded, soil hardness and infiltration
rate were measured in situ, whereas the sampled soils were analyzed in the laboratory. The following
results were obtained:

1. The infiltration rate was fairly controlled regardless of the formation of hardpans. If hardpans
were not sufficiently developed, the sites had significantly higher OM content. The infiltration
rate was considered to be controlled by clogging the OM, which was supported by the frequent
gas emission in the infiltration test.

2. The concentration of exchangeable cations was significantly lower when hardpans were not
sufficiently developed. Continuous flooding and higher OM content resulted in reductive
conditions, leading to ionization or mobilization in the reductive deep saturated vertical profile.

3. These factors cannot be recognized as long as the flood is effectively maintained in the rice terraces.
However, the local people or government should check the depth of the hard soil layer before the
planting season for better management of rice terraces.
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