16 research outputs found

    ICEF2011-60032 QUICK RESPONSE FUEL INJECTOR FOR DIRECT-INJECTION GASOLINE ENGINES

    Get PDF
    ABSTRACT We developed a new injector for direct injection gasoline engines that reduce the exhaust emissions and help to reduce fuel consumption. The newly developed actuator in this injector has two features. One is a bounce-less valve closing mechanism, and the second is quick-response moving parts. The first feature, the bounce-less valve closing mechanism, can prevent ejecting a coarse droplet, which causes unburned gas emission. The new actuation mechanism realizes the bounce-less valve closing. We analyzed the valve motion and injection behavior. The second feature, the quick response actuator, achieves a smaller minimum injection quantity. This feature assists in reducing the fuel consumption under low load engine conditions. The closing delay time of the needle valve is the dominant factor of the minimum injection quantity because the injection quantity is controlled by the duration time of the valve opening. The new actuator movements can be operated with a shorter closing delay time. The closing delay time is caused by a magnetic delay and kinematic delay. A compact magnetic circuit of the actuator reduces the closing delay time by 26%. In addition, the kinematic delay was improved when the hydraulic resistance was reduced by 9%. As a result, the new injector realizes reduction of the minimum injection quantity by 25% compared to a conventional injector

    Stable long-term operation of superconducting current-feeder system for the LHD

    Get PDF
    A superconducting (SC) current-feeder system is used as the current transmission lines for the experimental fusion device, LRD. It consists of nine flexible SC bus lines with total length of 497 m, and nine pairs of gas-cooled current leads. To avoid the propagation of the ice on the leads, the temperature of the terminals had been kept in the range between 5 and 20 degrees C by the heaters. The measured voltage drops of all leads were less than 20 mV. The liquid helium levels of the leads and the sub-cooler tank will equalize by the siphon method. The total time of the coil excitations exceeds 3000 hours. We have demonstrated successfully that the SC current-feeder system was stable and easy to handle, and is useful for the SC experimental fusion device

    Efficacy and Safety of Intravitreal Aflibercept Treat-and-Extend Regimens in Exudative Age-Related Macular Degeneration: 52- and 96-Week Findings from ALTAIR : A Randomized Controlled Trial.

    Get PDF
    PURPOSE:To evaluate efficacy and safety of intravitreal injections of aflibercept (IVT-AFL) treat-and-extend (T&E) dosing regimens in treatment-naïve patients with exudative age-related macular degeneration (AMD).METHODS:Adults aged at least 50 years old with exudative AMD and best-corrected visual acuity (BCVA) of 73-25 Early Treatment Diabetic Retinopathy Study (ETDRS) letters were included. Patients received three monthly doses of IVT-AFL 2 mg. At week 16, patients were randomized 1:1 to IVT-AFL T&E with either 2- or 4-week adjustments. The primary endpoint was mean change in BCVA from baseline to week 52. Outcomes were assessed at weeks 52 and 96.RESULTS:Baseline characteristics were comparable between the groups (n = 123 each). Over 52 weeks, mean number of injections was 7.2 and 6.9 and mean last injection interval was 10.7 and 11.8 weeks, for the 2- and 4-week groups, respectively. From baseline, mean change in BCVA was + 9.0 and + 8.4 letters (week 52) and + 7.6 and + 6.1 letters (week 96); mean change in central retinal thickness was - 134.4 µm and - 126.1 µm (week 52) and - 130.5 µm and - 125.3 µm (week 96). Last injection interval before week 52 was at least 12 weeks in 42.3% and 49.6% of patients and 56.9% and 60.2% before week 96. Over 96 weeks, mean number of injections was 10.4 (both groups). The safety profile of IVT-AFL was consistent with previous reports.CONCLUSIONS:IVT-AFL administered using two different T&E regimens for treatment-naïve exudative AMD improved functional and anatomic outcomes at week 52 and outcomes were maintained to week 96. Outcomes were similar between the 2- and 4-week groups.TRIAL REGISTRATION:ClinicalTrials.gov identifier, NCT02305238

    Gene Transfer Using Micellar Nanovectors Inhibits Choroidal Neovascularization In Vivo

    Get PDF
    PURPOSE: Age-related macular degeneration caused by choroidal neovascularization (CNV) remains difficult to be treated despite the recent advent of several treatment options. In this study, we investigated the in vivo angiogenic control by intravenous injection of polyion complex (PIC) micelle encapsulating plasmid DNA (pDNA) using a mice CNV model. METHODS: The transfection efficiency of the PIC micelle was investigated using the laser-induced CNV in eight-week-old male C57 BJ/6 mice. Firstly, each mouse received intravenous injection of micelle encapsulating pDNA of Yellow Fluorescent Protein (pYFP) on days 1,3 and 5. The expression of YFP was analyzed using fluorescein microscopy and western blotting analysis. In the next experiments, each mouse received intravenous injection of micelle encapsulating pDNA of soluble Fms-like tyrosine kinase-1 (psFlt-1) 1,3 and 5 days after the induction of CNV and the CNV lesion was analyzed by choroidal flatmounts on day 7. RESULTS: Fluorescein microscopy and western blotting analysis revealed that the expression of YFP was confirmed in the CNV area after injection of the PIC micelle, but the expression was not detected neither in mice that received naked pDNA nor those without CNV. Furthermore, the CNV area in the mice that received intravenous injection of the psFlt-1-encapsulated PIC micelle was significantly reduced by 65% compared to that in control mice (p<0.01). CONCLUSIONS: Transfection of sFlt-1 with the PIC micelle by intravenous injection to mice CNV models showed significant inhibition of CNV. The current results revealed the significant potential of nonviral gene therapy for regulation of CNV using the PIC micelle encapsulating pDNA

    Quantitative Analysis of Serum Procollagen Type I C-Terminal Propeptide by Immunoassay on Microchip

    Get PDF
    BACKGROUND: Sandwich enzyme-linked immunosorbent assay (ELISA) is one of the most frequently employed assays for clinical diagnosis, since this enables the investigator to identify specific protein biomarkers. However, the conventional assay using a 96-well microtitration plate is time- and sample-consuming, and therefore is not suitable for rapid diagnosis. To overcome these drawbacks, we performed a sandwich ELISA on a microchip. METHODS AND FINDINGS: The microchip was made of cyclic olefin copolymer with straight microchannels that were 300 µm wide and 100 µm deep. For the construction of a sandwich ELISA for procollagen type I C-peptide (PICP), a biomarker for bone formation, we used a piezoelectric inkjet printing system for the deposition and fixation of the 1st anti-PICP antibody on the surface of the microchannel. After the infusion of the mixture of 2.0 µl of peroxidase-labeled 2nd anti-PICP antibody and 0.4 µl of sample to the microchannel and a 30-min incubation, the substrate for peroxidase was infused into the microchannel; and the luminescence intensity of each spot of 1st antibody was measured by CCD camera. A linear relationship was observed between PICP concentration and luminescence intensity over the range of 0 to 600 ng/ml (r(2) = 0.991), and the detection limit was 4.7 ng/ml. Blood PICP concentrations of 6 subjects estimated from microchip were compared with results obtained by the conventional method. Good correlation was observed between methods according to simple linear regression analysis (R(2) = 0.9914). The within-day and between-days reproducibilities were 3.2-7.4 and 4.4-6.8%, respectively. This assay reduced the time for the antigen-antibody reaction to 1/6, and the consumption of samples and reagents to 1/50 compared with the conventional method. CONCLUSION: This assay enabled us to determine serum PICP with accuracy, high sensitivity, time saving ability, and low consumption of sample and reagents, and thus will be applicable to clinic diagnosis

    Inhibition of autophagy induces retinal pigment epithelial cell damage by the lipofuscin fluorophore A2E

    Get PDF
    In this study, we show augmented autophagy in the retinal pigment epithelial cell line ARPE-19 when cultured in the presence of the lipofuscin pigment A2E. A2E alone does not induce RPE cell death, but cell death was induced in the presence of A2E with the autophagy inhibitor 3-methyladenine (3MA), with a concomitant increase in the generation of mitochondrial reactive oxygen species. On the other hand, the ATP production capacity of mitochondria was decreased in the presence of A2E, and pharmacological inhibition of autophagy had no additional effects. The altered mRNA expression level of mitochondrial function markers was confirmed by real-time polymerase chain reaction, which showed that the antioxidant enzymes SOD1 and SOD2 were not reduced in the presence of A2E alone, but significantly suppressed with the addition of 3MA. Furthermore, transmission electron micrography revealed autophagic vacuole formation in the presence of A2E, and inhibition of autophagy resulted in the accumulation of abnormal mitochondria with loss of cristae. Spheroid culture of human RPE cells demonstrated debris accumulation in the presence of A2E, and this accumulation was accelerated in the presence of 3MA. These results indicate that autophagy in RPE cells is a vital cytoprotective process that prevents the accumulation of damaged cellular molecules
    corecore