34 research outputs found

    Delayed degradation of chlorophylls and photosynthetic proteins in Arabidopsis autophagy mutants during stress-induced leaf yellowing

    Get PDF
    Under mild abiotic-stress conditions, Arabidopsis atg mutants showed a functional stay-green phenotype which is probably caused by the lack of chloroplastic autophagy and the retrograde regulation of senescence-associated gene expressio

    Light-Mediated Regulation of Leaf Senescence

    No full text
    Light is the primary regulator of various biological processes during the plant life cycle. Although plants utilize photosynthetically active radiation to generate chemical energy, they possess several photoreceptors that perceive light of specific wavelengths and then induce wavelength-specific responses. Light is also one of the key determinants of the initiation of leaf senescence, the last stage of leaf development. As the leaf photosynthetic activity decreases during the senescence phase, chloroplasts generate a variety of light-mediated retrograde signals to alter the expression of nuclear genes. On the other hand, phytochrome B (phyB)-mediated red-light signaling inhibits the initiation of leaf senescence by repressing the phytochrome interacting factor (PIF)-mediated transcriptional regulatory network involved in leaf senescence. In recent years, significant progress has been made in the field of leaf senescence to elucidate the role of light in the regulation of nuclear gene expression at the molecular level during the senescence phase. This review presents a summary of the current knowledge of the molecular mechanisms underlying light-mediated regulation of leaf senescence

    Functional analysis of N-terminal domains of Arabidopsis chlorophyllide a oxygenase

    Get PDF
    Higher plants acclimate to various light environments by changing the antenna size of a light harvesting photosystem. The antenna size of a photosystem is partly determined by the amount of chlorophyll b in the light-harvesting complexes. Chlorophyllide a oxygenase (CAO) converts chlorophyll a to chlorophyll b in a two-step oxygenation reaction. In our previous study, we demonstrated that the cellular level of the CAO protein controls accumulation of chlorophyll b. We found that the amino acids sequences of CAO in higher plants consist of three domains (A, B, and C domains). The C domain exhibits a catalytic function, and we demonstrated that the combination of the A and B domains regulates the cellular level of CAO. However, the individual function of each of A and B domain has not been determined yet. Therefore, in the present study we constructed a series of deleted CAO sequences that were fused with green fluorescent protein and overexpressed in a chlorophyll b-less mutant of Arabidopsis thaliana, ch1-1, to further dissect functions of A and B domains. Subsequent comparative analyses of the transgenic plants overexpressing B-domain containing proteins and those lacking the B domain determined that there was no significant difference in CAO protein levels. These results indicate that the B domain is not involved in the regulation of the CAO protein levels. Taken together, we concluded that the A domain alone is involved in the regulatory mechanism of the CAO protein levels

    The Divergent Roles of STAYGREEN (SGR) Homologs in Chlorophyll Degradation

    Get PDF
    This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/.Degradation of chlorophyll (Chl) by Chl catabolic enzymes (CCEs) causes the loss of green color that typically occurs during senescence of leaves. In addition to CCEs, STAYGREEN1 (SGR1) functions as a key regulator of Chl degradation. Although sgr1 mutants in many plant species exhibit a staygreen phenotype, the biochemical function of the SGR1 protein remains elusive. Many recent studies have examined the physiological and molecular roles of SGR1 and its homologs (SGR2 and SGR-LIKE) in Chl metabolism, finding that these proteins have different roles in different species. In this review, we summarize the recent studies on SGR and discuss the most likely functions of SGR homologs.OAIID:oai:osos.snu.ac.kr:snu2015-01/102/0000003606/4ADJUST_YN:YEMP_ID:A002118DEPT_CD:517CITE_RATE:2.09FILENAME:2015-4 sgr minireview (mol cells).pdfDEPT_NM:식물생산과학부SCOPUS_YN:YCONFIRM:

    Arabidopsis NAC016 promotes chlorophyll breakdown by directly upregulating STAYGREEN1 transcription

    Full text link
    The Arabidopsis transcriptional factor NAC016 directly activates chlorophyll degradation during leaf senescence by binding to the promoter of SGR1 and upregulating its transcription. During leaf senescence or abiotic stress in Arabidopsis thaliana, STAYGREEN1 (SGR1) promotes chlorophyll (Chl) degradation, acting with Chl catabolic enzymes, but the mechanism regulating SGR1 transcription remains largely unknown. Here, we show that the Arabidopsis senescence-associated NAC transcription factor NAC016 directly activates SGR1 transcription. Under senescence-promoting conditions, the expression of SGR1 was downregulated in nac016-1 mutants and upregulated in NAC016-overexpressing (NAC016-OX) plants. By yeast one-hybrid and chromatin immunoprecipitation assays, we found that NAC016 directly binds to the SGR1 promoter, which contains the NAC016-specific binding motif (termed the NAC016BM). Furthermore, nac016-1 SGR1-OX plants showed an early leaf yellowing phenotype, similar to SGR1-OX plants, confirming that NAC016 directly activates SGR1 expression in the leaf senescence regulatory cascade. Although we found that NAC016 activates SGR1 expression in senescing leaves, this transcriptional regulation is considerably weaker in maturing seeds; the seeds of sgr1-1 mutants (also known as nonyellowing1-1, nye1-1) stayed green, while the seeds of nac016-1 mutants turned from green to yellow normally. We also found that the abscisic acid (ABA) signaling-related transcription factor genes ABI5 and EEL and the ABA biosynthesis gene AAO3, which activate SGR1 expression directly or indirectly, were significantly downregulated in nac016-1 mutants and upregulated in NAC016-OX plants. However, the NAC016BM does not exist in their promoter regions, indicating that NAC016 may indirectly activate these ABA signaling and biosynthesis genes, probably by directly activating transcriptional cascades regulated by the NAC transcription factor NAP. The NAC016-mediated regulatory cascades of SGR1 and other Chl degradation-related genes are discussed

    Rice phytochrome B (OsPhyB) negatively regulates dark- and nitrogen starvation-induced leaf senescence

    No full text
    Light regulates leaf senescence and light deprivation causes large-scale transcriptional reprogramming to dismantle cellular components and remobilize nutrients to sink organs, such as seeds and storage tissue. We recently reported that in Arabidopsis (Arabidopsis thaliana), Phytochrome-Interacting Factor4 (PIF4) and PIF5 promote dark-induced senescence and natural senescence by directly activating the expression of typical senescence-associated genes (SAGs), including ORESARA1 (ORE1) and ETHYLENE INSENSITIVE3 (EIN3). In contrast, phytochrome B (PhyB) inhibits leaf senescence by repressing PIF4 and PIF5 at the post-translational level. Although we found how red light signaling represses leaf senescence in Arabidopsis, it remains unknown whether PhyB and/or PhyA are involved in leaf senescence in rice (Oryza sativa). Here we show that rice phyB knockout mutants (osphyB-1, -2, and –3) exhibited an early senescence phenotype during dark-induced senescence, but an osphyA knockout mutant (osphyA-3) senesced normally. The RT-qPCR analysis revealed that several senescence-associated genes, including OsORE1 and OsEIN3, were significantly up-regulated in osphyB-2 mutants, indicating that OsPhyB also inhibits leaf senescence, like Arabidopsis PhyB. We also found that leaf segments of osphyB-2 senesced faster even under light conditions. Supplementation with nitrogen compounds, such as KNO3 and NH4NO3, rescued the early senescence phenotype of osphyB-2, indicating that starvation is one of the major signaling factors in the OsPhyB-dependent leaf senescence pathway.OAIID:oai:osos.snu.ac.kr:snu2015-01/102/0000003606/11ADJUST_YN:NEMP_ID:A002118DEPT_CD:517CITE_RATE:0FILENAME:2015-10 osphyb (plants)-weilan.pdfDEPT_NM:식물생산과학부SCOPUS_YN:NCONFIRM:

    Arabidopsis STAYGREEN-LIKE (SGRL) promotes abiotic stress-induced leaf yellowing during vegetative growth

    Full text link
    During leaf senescence in Arabidopsis, STAYGREEN 1 (SGR1) and SGR2 regulate chlorophyll degradation positively and negatively, respectively. SGR-LIKE (SGRL) is also expressed in pre-senescing leaves, but its function remains largely unknown. Here we show that under abiotic stress, Arabidopsis plants overexpressing SGRL exhibit early leaf yellowing and sgrl-1 mutants exhibit persistent green color of leaves. Under salt stress, SGR1 and SGRL act synergistically for rapid Chl degradation prior to senescence. Furthermore, SGRL forms homo- and heterodimers with SGR1 and SGR2 in vivo, and interacts with LHCII and chlorophyll catabolic enzymes. The role of SGRL under abiotic stress is discussed
    corecore